Analisi complessa/Numeri complessi: differenze tra le versioni

Wikibooks, manuali e libri di testo liberi.
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
Nessun oggetto della modifica
Riga 7: Riga 7:


È facile convincersi che con queste definizioni ha le proprietà algebriche di un '''[[w:campo|campo]]''' (vedi sezione 2.3). Inoltre, assimilando i numeri della forma <math>(X,0)</math> ai numeri reali, e' possibile mostrare che ogni numero complesso si può scrivere come
È facile convincersi che con queste definizioni ha le proprietà algebriche di un '''[[w:campo|campo]]''' (vedi sezione 2.3). Inoltre, assimilando i numeri della forma <math>(X,0)</math> ai numeri reali, e' possibile mostrare che ogni numero complesso si può scrivere come
:<math>(x,y)=(x,0)+(0,1)(y,0)=x+Iu\,</math>
:<math>(x,y)=(x,0)+(0,1)(y,0)=x+Iy\,</math>


dove I: = (0,1).
dove I: = (0,1).

Versione delle 22:11, 11 feb 2009

Indice del libro
Definizione 1.1.1.
Definiamo l'insieme dei numeri complessi come l'insieme delle coppie ordinate di numeri reali con somma e prodotto definiti come

È facile convincersi che con queste definizioni ha le proprietà algebriche di un campo (vedi sezione 2.3). Inoltre, assimilando i numeri della forma ai numeri reali, e' possibile mostrare che ogni numero complesso si può scrivere come

dove I: = (0,1).

L'analogia tra ed (è immediato vedere che i due insiemi sono in corrispondenza biunivoca) suggerisce di rappresentare il campo complesso come l'insieme dei punti di un piano cartesiano. Definiamo poi, dato un numero

definiamo:

  • il coniugato
  • la parte reale
  • la parte immaginaria
  • il modulo

Avendo rappresentato i numeri complessi su un piano cartesiano, si può ora passare ad una rappresentazione in coordinate polari. Si può quindi scrivere come

Evidentemente per z = 0 la forma polare è mal definita. è il modulo di e l' argomento , che è definito a meno di multipli interi di . Il valore principale dell'argomento è il valore scelto in , .

Definendo poi tramite la formula di Eulero

(relazione che sara' giustificata in seguito) avremo

TEOREMA 1.1.2.

Le quantità sopra definite godono di una serie di proprietà algebriche: siano , con e

Inoltre si nota che soddisfa le definizioni di una distanza , e di conseguenza si puo' considerare uno spazio metrico.