Matematica per le superiori/Derivate: differenze tra le versioni

Wikibooks, manuali e libri di testo liberi.
Contenuto cancellato Contenuto aggiunto
aggiunta interpretazione cinematica
Nessun oggetto della modifica
Riga 37: Riga 37:
:<math> = \lim_{\Delta x \rightarrow 0} {\frac{f(x + \Delta x) - f(x)}{\Delta x}} = f'(x)</math>
:<math> = \lim_{\Delta x \rightarrow 0} {\frac{f(x + \Delta x) - f(x)}{\Delta x}} = f'(x)</math>


==Definizione==
==Significato==
Per come è stata definita, la derivata rappresenta il limite del rapporto incrementale <math>\frac{\Delta y}{\Delta x}</math>. Infatti, <math>\frac{\Delta y}{\Delta x}</math> rappresenta il tasso di variazione medio della funzione nell' intervallo <math>\Delta x</math>, mentre <math>\lim_{\Delta x \rightarrow 0} {\frac{\Delta y}{\Delta x}}</math> rappresenta il tasso di variazione istantaneo della funzione nel punto, cioè la sua tendenza in quel punto.
Per come è stata definita, la derivata rappresenta il limite del rapporto incrementale <math>\frac{\Delta y}{\Delta x}</math>. Infatti, <math>\frac{\Delta y}{\Delta x}</math> rappresenta il tasso di variazione medio della funzione nell' intervallo <math>\Delta x</math>, mentre <math>\lim_{\Delta x \rightarrow 0} {\frac{\Delta y}{\Delta x}}</math> rappresenta il tasso di variazione istantaneo della funzione nel punto, cioè la sua tendenza in quel punto.



Versione delle 22:39, 9 mar 2009

La derivata è sempre relativa ad una funzione e, per come è definita, ad un suo punto specifico (c, ). La derivata prima (si parlerà successivamente di derivate seconde, terze,...) della funzione y = nel punto (c, ) si indica con .

Se una funzione viene derivata, cioè se ne calcola la derivata, in tutti i punti di un intervallo o del suo dominio, la derivata è ancora una funzione, del tipo . Questa funzione può essere a sua volta derivata, ottenendo quella che è detta derivata seconda ed è indicata con . Se questa viene di nuovo derivata, si ottiene la derivata terza (), la derivata quarta () e così via.

La derivata rappresenta la tendenza della funzione (in un punto o in un intervallo), cioè la sua tendenza ad aumentare o diminuire. Maggiore è la derivata, più il valore di f(x) tende ad aumentare. Se la derivata è negativa, f(x) tende a calare. Storicamente, il concetto di derivata di una funzione è nato dalla ricerca di una soluzione a due diversi problemi, conosciuti oggi come interpretazioni del concetto di derivata.

Interpretazione geometrica

Il problema di carattere geometrico riguarda le ricerca dell'equazione della tangente al grafico della curva in un punto. Questo problema si riduce alla sola determinazione del coefficiente angolare della tangente cercata.

Per fare ciò, si considera un punto

ed il punto Q determinato fornendo un incremento , per cui il punto Q ha coordinate

Poiché il coefficiente angolare (m) di una retta passante per due punti è:

.

Si nota facilmente che più i due punti "si avvicinano", più la secante passante per P e Q "si avvicina" alla tangente. Quindi:

Quindi, la derivata rappresenta il coefficiente angolare della tangente al grafico di in un punto. Si dimostra che la derivata rappresenta la tangente trigonometrica dell'angolo formato dalla tangente nel punto con il semiasse positivo delle x.

Interpretazione cinematica

Il secondo problema legato allo sviluppo del concetto di derivata riguarda la determinazione della velocità di un corpo in moto: considerato l' equazione del moto di un corpo, cioè S(t) essa può essere rappresentata su un grafico cartesiano, nelle cui ascisse è rappresentato il tempo e nelle cui ordinate è rappresentato lo spostamento. Perciò S(x) è una qualsiasi funzione del tipo f(x).

Il problema risiede nel determinare la velocità del corpo dopo un dato tempo, cioè in un certo punto

Per fare ciò, si può considerare un punto Q di ascissa e, quindi, di ordinata e poi calcolare la velocità con la formula

dove S e t indicano lo spostamento nel punto indicato a pedice. Questa, però è la velocità media sostenuta nel percorso fra P e Q. Il problema era calcolare la velosità istantanea, cioè nel solo punto P. Questo valore può essere approssimato in modo sempre migliore diminuendo la distanza fra le ascisse di P e Q. Perciò:

Significato

Per come è stata definita, la derivata rappresenta il limite del rapporto incrementale . Infatti, rappresenta il tasso di variazione medio della funzione nell' intervallo , mentre rappresenta il tasso di variazione istantaneo della funzione nel punto, cioè la sua tendenza in quel punto.