Matematica per le superiori/Derivate: differenze tra le versioni

Wikibooks, manuali e libri di testo liberi.
Contenuto cancellato Contenuto aggiunto
Corretto una mia precedente imprecisione formale; Iniziato a scrivere il paragrafo "punti stazionari e non derivabili"
Finitio il paragrafo sui punti stazionari e non derivabili
Riga 39: Riga 39:
==Significato==
==Significato==
Come si evince dalla definizione data nei due problemi storici, la derivata rappresenta il limite del rapporto incrementale <math>\frac{\Delta y}{\Delta x}</math>. Infatti, <math>\frac{\Delta y}{\Delta x}</math> rappresenta il tasso di variazione medio della funzione nell' intervallo <math>\Delta x</math>, mentre <math>\lim_{\Delta x \rightarrow 0} {\frac{\Delta y}{\Delta x}}</math> rappresenta il tasso di variazione istantaneo della funzione nel punto, cioè la sua tendenza in quel punto.
Come si evince dalla definizione data nei due problemi storici, la derivata rappresenta il limite del rapporto incrementale <math>\frac{\Delta y}{\Delta x}</math>. Infatti, <math>\frac{\Delta y}{\Delta x}</math> rappresenta il tasso di variazione medio della funzione nell' intervallo <math>\Delta x</math>, mentre <math>\lim_{\Delta x \rightarrow 0} {\frac{\Delta y}{\Delta x}}</math> rappresenta il tasso di variazione istantaneo della funzione nel punto, cioè la sua tendenza in quel punto.

Per quanto riguarda lo studio di funzioni, la derivata prima di una funzione in un punto rappresenta la sua monotonia in quel punto, cioè la sua crescenza o decrescenza. In particolare, negli intervalli in cui la derivata prima è positiva, la funzione è crescente; nei punti in cui <math>f'(x)<0</math> la funzione è decrescente.


==Punti stazionari e non derivabili==
==Punti stazionari e non derivabili==
Si dicono punti stazionari di una funzione tutti e soli i punti in cui la derivata prima è 0.
Si dicono punti stazionari di una funzione tutti e soli i punti in cui la derivata prima è 0.


Si dicono punti (o intervalli) non derivabili tutti e soli i punti della funzione in cui: la derivata assume valore infinito, non esiste il limite del rapporto incrementale per <math>\Delta x \rightarrow 0</math> oppure il limite da destra (per eccesso) è diverso dal limite da sinistra(per difetto).
Si dicono punti (o intervalli) non derivabili tutti e soli i punti della funzione in cui: la derivata assume valore infinito, non esiste il limite del rapporto incrementale per <math>\Delta x \rightarrow 0</math> oppure il limite da destra (per eccesso) è diverso dal limite da sinistra(per difetto). In questi punti la funzione ha un comportamento particolare.

Nei punti stazionari, la funzione può avere un punto di massimo (relatico o assoluto), un punto di minimo (relativo o assoluto) o un punto di flesso a tangente orizzontale.

I punti di massimo relativo sono punti in cui:
:<math>\exists I_C: \forall x \in I_C \Rightarrow f(x) \le f(x)</math> (punti di massimo debole) oppure
:<math>\exists I_C: \forall x \in I_C \Rightarrow f(x) < f(x)</math> (punti di massimo forte)

con <math>I_C</math>: intorno del punto x = c

Se <math>I_C \equiv D</math> (con D = dominio di <math>f(x)</math>), allora si parla di punti di massimo assoluti.

Analogamente, si dicono punti diminimo i punti in cui:
:<math>\exists I_C: \forall x \in I_C \Rightarrow f(x) \ge f(x)</math> (punti di minimo debole) oppure
:<math>\exists I_C: \forall x \in I_C \Rightarrow f(x) > f(x)</math> (punti di minimo forte)

Se <math>I_C \equiv D</math> (con D = dominio di <math>f(x)</math>), allora si parla di punti di minimo assoluti.

I punti di flesso a tangente orizzontale sono punti in cui la derivata prima si annulla, ma 'prima' e 'dopo' di essi la derivata prima ha uguale segno (cioè la funzione ha uguale andamento). Quindi sono punti di flesso i punti in cui:
:<math>\exists I_C: \forall (x_1<c)</math> e <math> \forall (x_2>c) \in I_C \Rightarrow f'(x_1)\cdot f'(x_2)>0 \land f'(c) = 0</math>

Se in un punto non derivabile il limite della derivata (il limite perchè in quel punto la derivata non esiste) da destra è diverso da quello da sinistra ma sono entrambi finiti e diversi da 0, cioè:
:<math>\lim_{x \rightarrow c^{-}} f'(x) \ne \lim_{x \rightarrow c^{+}} f'(x)</math>

allora nel punto x = c si ha un punto angoloso, cioè un punto nel quale sono presenti due diverse tangenti.


Se, invece, nel punto i limiti della derivata da destra e da sinistra sono entrambi infiniti positivamente o negativamente (purchè aventi entrambi lo stesso 'segno'), allora in quel punto è presente un punto di flesso a tangente verticale. Scritto in simboli:
In questi punti la funzione ha comportamenti particolari. In questa sede essi verranno solo descritti, in quanto una loro trattazione più completa ha sede nel paragrafo dedicato allo studio di funzioni.
:<math>\lim_{x \rightarrow c^{-}} f'(x) \cdot \lim_{x \rightarrow c^{+}} f'(x) = +\infty</math>


Nel caso in cui invece i due limiti siano entrambi infiniti ma di diverso 'segno', allora nel punto si ha una cuspide:
Nei punti stazionari, la funzione può avere un punto di massimo, un punto di minimo o un punto di flesso a tangente orizzontale.
:<math>\lim_{x \rightarrow c^{-}} f'(x) \cdot \lim_{x \rightarrow c^{+}} f'(x) = -\infty</math>


==Teoremi sulle derivate==
==Teoremi sulle derivate==

Versione delle 22:04, 11 mar 2009

La derivata è sempre relativa ad una funzione e, per come è definita, ad un suo punto specifico (c, ). La derivata prima (si parlerà successivamente di derivate seconde, terze,...) della funzione y = nel punto (c, ) si indica con .

Se una funzione viene derivata, cioè se ne calcola la derivata, in tutti i punti di un intervallo o del suo dominio, la derivata è ancora una funzione, del tipo . Questa funzione può essere a sua volta derivata, ottenendo quella che è detta derivata seconda ed è indicata con . Se questa viene di nuovo derivata, si ottiene la derivata terza (), la derivata quarta () e così via.

La derivata rappresenta la tendenza della funzione (in un punto o in un intervallo), cioè la sua tendenza ad aumentare o diminuire. Maggiore è la derivata, più il valore di f(x) tende ad aumentare. Se la derivata è negativa, f(x) tende a calare. Storicamente, il concetto di derivata di una funzione è nato dalla ricerca di una soluzione a due diversi problemi, conosciuti oggi come interpretazioni del concetto di derivata.

Interpretazione geometrica

Il problema di carattere geometrico riguarda le ricerca dell'equazione della tangente al grafico della curva in un punto. Questo problema si riduce alla sola determinazione del coefficiente angolare della tangente cercata.

Per fare ciò, si considera un punto

ed il punto Q determinato fornendo un incremento , per cui il punto Q ha coordinate

Poiché il coefficiente angolare (m) di una retta passante per due punti è:

.

Si nota facilmente che più i due punti "si avvicinano", più la secante passante per P e Q "si avvicina" alla tangente. Quindi:

Quindi, la derivata rappresenta il coefficiente angolare della tangente al grafico di in un punto. Si dimostra che la derivata rappresenta la tangente trigonometrica dell'angolo formato dalla tangente nel punto con il semiasse positivo delle x.

Interpretazione cinematica

Il secondo problema legato allo sviluppo del concetto di derivata riguarda la determinazione della velocità di un corpo in moto: considerato l' equazione del moto di un corpo, cioè S(t) essa può essere rappresentata su un grafico cartesiano, nelle cui ascisse è rappresentato il tempo e nelle cui ordinate è rappresentato lo spostamento. Perciò S(x) è una qualsiasi funzione del tipo f(x).

Il problema risiede nel determinare la velocità del corpo dopo un dato tempo, cioè in un certo punto

Per fare ciò, si può considerare un punto Q di ascissa e, quindi, di ordinata e poi calcolare la velocità con la formula

dove S e t indicano lo spostamento nel punto indicato a pedice. Questa, però è la velocità media sostenuta nel percorso fra P e Q. Il problema era calcolare la velosità istantanea, cioè nel solo punto P. Questo valore può essere approssimato in modo sempre migliore diminuendo la distanza fra le ascisse di P e Q. Perciò:

Significato

Come si evince dalla definizione data nei due problemi storici, la derivata rappresenta il limite del rapporto incrementale . Infatti, rappresenta il tasso di variazione medio della funzione nell' intervallo , mentre rappresenta il tasso di variazione istantaneo della funzione nel punto, cioè la sua tendenza in quel punto.

Per quanto riguarda lo studio di funzioni, la derivata prima di una funzione in un punto rappresenta la sua monotonia in quel punto, cioè la sua crescenza o decrescenza. In particolare, negli intervalli in cui la derivata prima è positiva, la funzione è crescente; nei punti in cui la funzione è decrescente.

Punti stazionari e non derivabili

Si dicono punti stazionari di una funzione tutti e soli i punti in cui la derivata prima è 0.

Si dicono punti (o intervalli) non derivabili tutti e soli i punti della funzione in cui: la derivata assume valore infinito, non esiste il limite del rapporto incrementale per oppure il limite da destra (per eccesso) è diverso dal limite da sinistra(per difetto). In questi punti la funzione ha un comportamento particolare.

Nei punti stazionari, la funzione può avere un punto di massimo (relatico o assoluto), un punto di minimo (relativo o assoluto) o un punto di flesso a tangente orizzontale.

I punti di massimo relativo sono punti in cui:

(punti di massimo debole) oppure
(punti di massimo forte)

con : intorno del punto x = c

Se (con D = dominio di ), allora si parla di punti di massimo assoluti.

Analogamente, si dicono punti diminimo i punti in cui:

(punti di minimo debole) oppure
(punti di minimo forte)

Se (con D = dominio di ), allora si parla di punti di minimo assoluti.

I punti di flesso a tangente orizzontale sono punti in cui la derivata prima si annulla, ma 'prima' e 'dopo' di essi la derivata prima ha uguale segno (cioè la funzione ha uguale andamento). Quindi sono punti di flesso i punti in cui:

e

Se in un punto non derivabile il limite della derivata (il limite perchè in quel punto la derivata non esiste) da destra è diverso da quello da sinistra ma sono entrambi finiti e diversi da 0, cioè:

allora nel punto x = c si ha un punto angoloso, cioè un punto nel quale sono presenti due diverse tangenti.

Se, invece, nel punto i limiti della derivata da destra e da sinistra sono entrambi infiniti positivamente o negativamente (purchè aventi entrambi lo stesso 'segno'), allora in quel punto è presente un punto di flesso a tangente verticale. Scritto in simboli:

Nel caso in cui invece i due limiti siano entrambi infiniti ma di diverso 'segno', allora nel punto si ha una cuspide:

Teoremi sulle derivate

Derivate fondamentali

Legami fra derivabilità e continuità

Teoremi sulle funzioni derivabili