Elettrotecnica/Grandezze periodiche non sinusoidali: differenze tra le versioni

Jump to navigation Jump to search
nessun oggetto della modifica
(Corretto: "coscienza")
Nessun oggetto della modifica
{{Avanzamento|100%|23 giugno 2011}}
{{Avanzamento|0%|8 giugno 2011}}
La ammissione, implicitamente fatta sin ora, che i problemi relativi alle grandezze periodiche si limitino alla trattazione di circuiti interessati da grandezze semplicemente sinusoidali, trova nella pratica scarso riscontro. In effetti, per quanto si faccia , le inevitabili dissimetrie costruttive e di funzionamento del macchinario generatore, specie quello a poli salienti, comportano sempre un certo discostarsi della forma di onda della tensione da esso ottenibile dalla desiderata forma d'onda sinusoidale pura. D'altro canto la già notevole difficoltà della trattazione dei problemi in corrente alternastaalternata verrebbe talmenteetalmente aggravata dalla considerazione della forma d'onda effettiva, che, in tutti quei casi, e sono la maggioranza, nei quali lo scarto tra l'andamento effettivo della tensione e l'andamento sinusoidale non è molto sensibile, si rinuncia ad ogni ulteriore precisione di indagine.<br />
Esistono però dei casi nei quali non è assolutamente lecito confondere l'effettivo andamento nel tempo delle grandezze elettriche con funzioni sinusoidali; è con riferimento a questi casi che, in questa sede, verranno brevemente dati i cenni generali di come possono essere trattate grandezze elettriche periodiche di forma qualsiasi.<br />
La trattazione prende lo spunto dal noto teorema di '''[[:w:Serie di Fourier|Fourier]]''' secondo il quale qualsiasi funzione continua di una variabile indipendentaindipendente può essere sviluppata in una serie indefinita di termini, ciacunociascuno dei quali è una funzione sinusoidale della variabile, di frequenza crescente secondo la serie naturale dei numeri. Ciò che, con riferimento ad una funzione del tempo '''y(t)''', può esprimersi affermando che:<br />
{{equazione|id=|eq=<math>\ y(t)=A_0+A_1 sen (\omega t+\alpha_1)+A_2 sen (2 \omega t+\alpha_2)+.....</math>}}<br />
dove:<br />
In pratica è raro il caso in cui sia nota la espressione analitica della funzione '''y(t)'''. Più frequente è il caso che della funzione in parola si conosca graficamente l'andamento nel tempo: ciò che può aversi, ad esempio, ogni qualvolta della funzione data possa ottenersi l'oscillogramma.<br />
Si ricorre allora a metodi grafico-analitici tra i quali ricordiamo quello di '''Thompson''' in cui si usa, essenzialmente, per il calcolo dei coefficienti '''C<sub>n</sub>''' e '''S<sub>n</sub>''', l'artificio di ricondurre gli integrali a sommatorie di un numero finito di addendi.<br />
Non abbiamo qui il tempo necessario alla completascompleta esposizione del metodo e rinviamo ai testi di elettrotecnica per un più approfondito esame dell'argomento.<br />
Notiamo solo che la laboriosità di metodi consimilisimili ha portato, nella tecnica delle misure elettriche, allo sviluppo di speciali apparecchi che prendono, appunto, il nome di analizzatori di armoniche, per mezzo dei quali è possibile di una data tensione o corrente, individuare il contenuto armonico fino ad ordini sufficientemente elevati e con precisioni che tenuto conto dei possibili errori di graficismo sono spesso dell'ordine di grandezza, se non maggiori, di quelli ottenibili con i citati metodi grafico-analitici.<br />
Per qualsiasi via si pervenga ad esprimere una grandezza elettrica funzione periodica non sinusoidale del tempo in una serie di Fourier, interessa estendere a queste grandezze quelle definizioni fondamentali che furono a suo tempo date per le grandezze sinusoidali.<br />
Anche qui per '''valore massimo''' o '''ampiezza''' si intende l'ordinata massima della curva rappresentativa.<br />
Si intende, infine, per sinusoide equivalente quella funzione sinusoidale che abbia lo stesso periodo e lo stesso valore efficace della funzione data e per '''coefficiente di deformazioe''' il rapporto tra la differenza massima tra le ordinate dell'area considerata e della sinusoide equivalente.<br />
Per la determinazione del coefficiente di deformazione la sinusoide equivalente deve essere sovrapposta alla curva effettiva in modo tale da ridurre al minimo la differenza predetta.<br />
Vediamo ora come sia possibile risalire al calcolo della corrente che circola in un circuito sottopostoadsottoposto ad una '''f.e.m.'''alternativa non sinusoidale. Sia:<br />
{{equazione|id=|eq=<math>\ e=E_{1m}\ sen(\omega t+\alpha_1)+E_{3m}\ sen(3\ \omega t+\alpha_3)+...</math>}}<br />
la '''f.e.m.''' in questione di valore efficace:<br />
Anche la corrente avrà in generale un andamento non sinusoidale e la sua espressione sarà del tipo:<br />
{{equazione|id=|eq=<math>\ i=I_{1m}\ sen(\omega t+\alpha_1+\phi_1)+I_{3m}\ sen(3\ \omega t+\alpha_3+\phi_3)+....</math>}}<br />
ed il problema è risolto non appena siano determinate le amoiezzeampiezze e le fasi delle singole armoniche che compaiono nella espressione della corrente.<br />
Sostituendo nella equazione che lega i v alorivalori istantanei le due esdpressioniespressioni della '''f.e.m.''' e della '''corrente''' si vede subito che essa si scinde in tante equazioni indipendenti quante sono le sinusoidi di frequenza diversa nella '''f.e.m.''' e nella corrente.Così che in definitiva, dalla soluzione di queste equazioni si ottiene, per ogni armonica della tensione, l'ampiezza e la fase nella generica forma seguente (riferita alla ennesima armonica):<br />
{{equazione|id=|eq=<math>\ I_{n,m}={E_{n,m} \over \sqrt {R^2+(n\omega L-{1 \over n\omega C})^2}} \qquad tg\ \phi_n={n\omega L-{1 \over n\omega C} \over R}</math>}}.<br />
Da questa espressione si trae immediatamente che l'ampiezza di una armonica di corrente è definita in fun zionefunzione della ampiezza della armonica di tensione di pari ordine e delle caratteristiche elettriche e magnetiche del circuito alla frequenza che caratterizza l'armonica in questione. Se ne deduce che in generale, salvo il casodicaso di circuiti puramente ohmici, la forma d'onda della corrente rfisulteràrisulterà diversa da quedllaquella della tensione: e non è difficile accorgersicheaccorgersi che in circuiti prevalentemente induttivi la corrente risulterà meno deformata della tensione, laddove in circuiti prevalentemente capacitivi il contenuto armonico percentualre della corrente risulterà più accentuato di quello della tensione.<br />
Ciò posto, se tensione e corrente in un circuito assumono la forma:<br />
{{equazione|id=|eq=<math>\ e=E_{1m}\ sen(\omega t+\alpha_1)+E_{3m}\ sen(3\ \omega t+\alpha_3)+...</math>}}<br />
10

contributi

Menu di navigazione