Algebra vettoriale: differenze tra le versioni

Jump to navigation Jump to search
Si è visto che un ve ttore può venire descritto analiticamente tramite un insieme dinumeri che, in un qualche modo, sono correlati a un sistema di riferimento scelto di vettori unitari. Tali tre numeri devono ubbidire a certe specifiche regole, poiché non tutti gli insiemi di tre numeri costituiscono un vettore. Una di tali regole, per esempio, è la relazione con cui le componenti di un vettore si trasformano ruotando un sistema di coordinate rettangolari.<br>
 
Siano '''x<sub>1</sub>''', '''x<sub>2</sub>''', '''x<sub>3</sub>''', le componenti del vettore posizione <math>\vec{\mathcal{r}}</math> rispetto ad un sistema di riferimento di vettori ortogonali unitari <math>\vec{\mathcal{e_1}},\vec{\mathcal{e_2}},\vec{\mathcal{e_3}}</math>. Se questo sistema si fa ruotare, mantenendo fissa l'origine, si ottiene un nuovo sistema ortogonale. Si denoti il nuovo sistema con <math>\vec{\mathcal{e'_1}},\vec{\mathcal{e'_2}},\vec{\mathcal{e'_3}}</math>. Riguardo a questo sistema…..'''x'<sub>1</sub>''', '''x'<sub>2</sub>''', '''x'<sub>3</sub>''' siano le componenti le componenti del vettore posizione. Allora si ha<br>
<math>\ \ \ \ \ \ \ \sum_{k=1}^N k^2</math>
 
 
 

Menu di navigazione