Utente:Giuli2797/Cromatografia/Cromatografia liquida: differenze tra le versioni

Jump to navigation Jump to search
note
(modifica perdita della fase legata)
(note)
La prima non ha un grande interesse in ambito analitico in quanto viene solitamente usata solo a scopi preparativi e prevede l'utilizzo di una strumentazione simile a quella che venne usata da Twsett nel 1906. Questa tecnica prevede l'utilizzo di una colonna di vetro riempita con una sospensione di gel di silice in testa alla quale viene caricato il campione che viene poi eluito con dei solventi scelti in base al tipo di analita.
 
La cromatografia liquida ad alta prestazione è invece la tecnica più usata in ambito analitico e trova molte applicazioni anche in ambito industriale e nella ricerca scientifica. È una tecnica cromatografica molto efficace e versatile in quanto permette di separare due o più composti presenti in un campione in poco tempo, realizzando la separazione di miscele anche molto complesse oltre a fornire, se accoppiata con un rivelatore adatto, la composizione quantitativa della miscela in esame. L'HPLC è infatti in grado di separare composti con un peso molecolare che va da 54 a 450000 Da ed è con quantità di campione estremamente piccole, fino a dimensioni nell'ordine dei nanogrammi.<ref> McMaster, pag. 3 </ref>
La cromatografia liquida è estremamente versatile in quanto può essere utilizzata per separare ed analizzare un grande numero di composti: sia sostanze con bassa tensione di vapore come le macromolecole e i composti ionici, sia prodotti termolabili (aminoacidi e acidi nucleici) altrimenti non analizzabili con altre tecniche quali ad esempio la gascromatografia.
È considerata l'evoluzione della strumentazione usata nella cromatografia liquida classica: prevede l'utilizzo di colonne particolari che vengono sottoposte ad un flusso di eluente sotto pressione. Il fatto di lavorare a pressione molto elevate è alla base dell'efficienza di questa tecnica in quanto consente di avere una fase stazionaria molto fine e ben impaccata, necessaria per ottenere una buona risoluzione come si evince dalla equazione di Van Deemter, senza per questo allungare troppo i tempi di eluizione. Per contro lavorare sotto pressione fa alzare considerevolmente i costi della strumentazione in quanto talvolta sono necessarie pressioni che possono raggiungere valori nell'ordine di centinaia di atmosfere. Questo aspetto, unito alle esigenze relative alla strumentazione necessaria, viene ampliamente compensato dall'efficienza della separazione. <br>
==Pompe==
 
I flussi che vengono generalmente ottenuti variano da 0,1 a 10 mL/min e hanno una riproducibilità non inferiore allo 0,5%.<ref>Skoog, pag. 916</ref>
Le pompe usate per l'HPLC devono soddisfare i seguenti requisiti:
* il flusso di eluente deve essere costante e privo di pulsazioni per garantire costante la velocità della fase mobile e per evitare la generazione di impulsi di pressione al momento della compressione, generando così discontinuità all'interno della colonna;
 
 
La '''pompa a siringa''' è costituita da una camera cilindrica che viene riempita di fase mobile la quale viene poi spinta in colonna da un pistone. Il vantaggio di queste pompe è che sono molto robuste, il che consente di operare ad elevate pressioni, e che garantiscono la totale assenza di impulsi, questo perché il pistone si muove in modo continuo e a velocità costante. Per contro però presentano una capacità limitata (di solito 250 mL <ref>Skoog, pag. 916</ref>) e non consentono l'esecuzione di una eluizione a gradiente di solvente.
 
 
[[File:Pompa alternativa reciprocante a singola testa.png|thumb|right|Pompa alternativa reciprocante a singola testa]]
 
Le pompe alternativa reciprocanti sia a singola che a doppia testa sono le pompe più usate in cromatografia liquida, hanno un piccolo volume interno che varia da 35 a 400 mL ed elevata pressione interna che può arrivare fino a 10000 psi. <ref>Skoog, pag. 916 </ref> <br>
La '''pompa alternativa reciprocante a singola testa''' è costituita da un albero a camme che muove alternativamente un pistone avanti e indietro nella camera di iniezione. Questa è dotata di due valvole: una che regola l'entrata dell'eluente e l'altra che serve ad indirizzarlo verso la colonna. Quando il pistone si muove all'indietro la valvola del solvente è aperta mentre quella che conduce alla colonna è chiusa, in questo modo la camera si riempie di fase mobile. Quando invece il pistone si muove in avanti spinge il solvente verso la colonna passando attraverso la valvola superiore. In questa fase di compressione la valvola che fa entrare il solvente nella camera è mantenuta chiusa. <br> [[File:Pompa alternativa reciprocante a doppia testa.png|thumb|right|Pompa alternativa reciprocante a doppia testa]]
 
Per modificare il volume di campione iniettato in colonna sarà quindi sufficiente usare un loop a capienza differente.
Nel frattempo la fase mobile viene fatta fluire direttamente in colonna. Una volta che il loop si è riempito, la valvola ruota e passa all'assetto di iniezione: la fase mobile viene forzata attraverso il loop spingendo il campione in colonna, mentre il campione in eccesso va direttamente allo scarico, in questo modo si è sicuri che il volume di campione che entra in colonna è solo quello contenuto nel loop. <br>
Per omogeneizzare il sistema e condizionare la colonna, si deve far fluire la fase mobile almeno 15-20 minuti prima dell'analisi in modo tale da eliminare le specie eventualmente adsorbite sulla fase stazionaria. <ref>Sadek, pag. 40 </ref>
Una HPLC tipo viene svolta con volumi di circa 20 μL di solvente contenenti circa 10-50 ng di campione, i flussi di iniezione solitamente raggiungono una velocità di circa 1-2 mL/min e impiegano tempi diversi a seconda che l'analisi sia eseguita in isocratica (circa 10 minuti) o a gradiente di solvente (1 ora). <ref> McMaster, pag. 9 </ref>
 
==Colonne==
Le colonne usate in HPLC sono solitamente realizzate in acciaio inox in quanto è un materiale che ben soddisfa le esigenze di pressione e inerzia chimica nei confronti dei solventi usati. <br>
Lunghezza e diametro sono variabili a seconda dello scopo per cui vengono utilizzate: quelle destinate a scopi preparativi sono solitamente più grandi e più lunghe perché devono essere delle dimensioni adeguate per lavorare con grandi quantità di sostanze, quelle analitiche invece sono più piccole.
Le dimensioni per queste ultime sono 2-5 cm di diametro e hanno una lunghezza che arriva ad un massimo di 25 cm. <ref>Skoog, pag. 917 </ref> <br>
Bisogna comunque tenere a mente il fatto che colonne più lunghe richiedono pressioni più elevate e quindi il processo di eluizione diventa più lungo e complesso da gestire per via delle condizioni più drastiche. Si cerca infatti di lavorare con colonne che siano il più corte possibili usando una fase stazionaria con granulometria molto fine. <br>
È dotata di due filtri posizionati alle estremità: quello presente all'imboccatura serve per evitare che vi entrino delle particelle che possono andare ad ostruirla, mentre quello che si trova all'estremità di uscita della colonna serve a trattenere la fase stazionaria in modo che non venga pompata all'interno del rivelatore. <ref> McMaster, pag. 5 </ref> <br>
Quando vengono fabbricate non hanno un verso di utilizzo preferenziale, ma una volta utilizzate vanno orientate poi sempre nello stesso verso: il flusso di solvente all'interno infatti provoca un riarrangiamento della fase stazionaria che rischia di venire danneggiata in caso di inversione del flusso. Solitamente si esegue questa pratica solamente in casi estremi nel tentativo di salvare una colonna danneggiata come ad esempio nel caso in cui ci siano segni di sovrappressione o nel caso in cui sia intasata. <br>
Ci sono diversi fattori che possono andare ad intaccare e compromettere l'efficienza della colonna:
# effetti che dissolvono la fase stazionaria della colonna o che compromettono l'imballaggio stesso;
# materiali che si legano alla colonna.
1. Perdita della fase legata - questo effetto può essere causato principalmente da due effetti: pH troppo basso o temperatura troppo alta. Il pH di esercizio deve essere circa compreso tra 2,5 e 7,5. <ref>McMaster, pag. 74 </ref> Gli impaccamenti per le colonne cromatografiche vengono generalmente realizzati per reazione tra dei silani e il gruppo -OH della silice con formazione di silossani. Dal momento che tale reazione è fortemente influenzata dal pH occorre che questo venga mantenuto in un intervallo di esercizio tale da non modificare la forma in cui si trova la superficie costituente l’impaccamento della colonna: quando il pH scende a valori inferiori a 2,0 unità di pH infatti, il legame silossanico viene rotto con formazione di silanoli che, essendo più polari rispetto ai silossani corrispondenti, aumentano lo scambio cationico della superficie. Allo stesso modo elevate temperature possono produrre diversi effetti sulla colonna: innanzitutto può andare ad aumentare la solubilità della silice e accelerare la formazione di zone svuotate. Se poi questo avviene a pH bassi il rischio è che si abbia la rimozione di parte della fase legata che si può facilmente riconoscere nel cromatogramma in quanto è caratterizzata dalla presenza di 4 picchi caratteristici. Un altro aspetto che può portare alla formazione di questo effetto è dato dall'ossidazione della fase legata: per questo motivo infatti si esegue il degasaggio dei solventi. <br>
2. Aumento della pressione - ogni colonna ha un limite superiore di pressione che può essere tollerato e che qualora questo venga superato può provocare diversi problemi. Innanzitutto ci sono tre diversi punti della colonna in cui può verificarsi tale aumento di pressione: all'imboccatura, nel letto della colonna o in corrispondenza dell'uscita. All'imboccatura della colonna è presente un filtro che è in grado di raccogliere ogni particella di dimensioni superiori a 2μm: più materiale viene raccolto e più la pressione tende ad aumentare. Il filtro posizionato in testa alla colonna può essere anche otturato da del tampone precipitato. In questi casi per risolvere il problema si può sostituire il filtro. Si agisce nello stesso modo qualora l'aumento della pressione sia localizzato in corrispondenza del filtro posizionato in fondo alla colonna, una valida alternativa prevede l'esecuzione di una sonicazione con NaOH 10% per pulire la colonna. <ref>McMaster, pag. 82 </ref> Se l'aumento di pressione persiste allora vuol dire che il problema riguarda il letto della colonna. Questo può essere causato dalla precipitazione del campione o del tampone e si verifica soprattutto se si lavora con soluzioni molto concentrate, quasi saturate. Se l'otturazione non è completa e la fase mobile riesce comunque a fluire attraverso la colonna, seppur a fatica, si può provare a risolvere il problema usando un eluente estremamente forte, oppure, in casi estremi, si può provare ad invertire la colonna. <br>
3. Canalizzazione della colonna - questo effetto prevede la formazione di cammini preferenziali all'interno della colonna in cui la resistenza allo scorrimento del flusso è minore. In questa porzione del letto cromatografico le zone di interfaccia tra le due fasi sono più limitate e la colonna risulta quindi essere meno efficiente nella separazione, ne consegue quindi che i tempi di ritenzione si accorciano. <ref>McMaster, pag. 84 </ref> Questo effetto porta allo slargamento delle bande in uscita dalla colonna a cui consegue l'ottenimento di picchi scodati; <ref> Sadek, pag. 29</ref> <br>
4. Formazione di zone svuotate - questo effetto si verifica soprattutto a pH > 8 in quanto in queste condizioni la silice che costituisce la fase stazionaria inizia a dissolversi formando delle zone vuote all'interno del riempimento della colonna, per questo motivo il limite superiore di pH di esercizio è posto a 7,5. <ref>McMaster, pag. 77 </ref> <br>
5. Materiali legati - questo effetto si verifica quando del materiale rimane incastrato nel riempimento oppure va a rivestire la superficie della fase stazionaria cambiando quindi le caratteristiche della colonna.
 
All'interno della colonna si trova la fase stazionaria che è composta da particelle molto fini e disposte in modo uniforme con granulometria compresa tra i 3 e i 10 μm, <ref>Skoog, pag. 918 </ref> funzionalizzate a seconda della necessità. Si possono avere:
* particelle pellicolari - costituite di granuli di silice o di altro polimero su cui è depositato un sottile strato di fase stazionaria liquida o di resina scambiatrice;
* particelle porose - costituite di granuli di silice, zeoliti o altri polimeri la cui componente attiva è costituita dalla stessa superficie delle particelle. <br>
 
La '''cromatografia di adsorbimento''' è utilizzata per separare sostanze sia inorganiche che organiche. In particolare è adatta per sostanze moderatamente o poco polari, solitamente insolubili in acqua e con PM<5000. È spesso usata anche per separare miscele di isomeri come ad esempio regioisomeri. <br>
La fase stazionaria si presenta come una polvere molto fine impaccata in colonna i cui siti attivi si trovano sulla superficie dei granuli ed è solitamente costituita da allumina o silice: sebbene abbiano caratteristiche di adsorbimento confrontabili tra loro la più usata è la silice in quanto ha una maggior varietà di forme utili. <ref>Skoog, pag. 924</ref> Può essere applicata sia alla cromatografia liquida che alla gascromatografia, l'unica differenza sarà data dalla fase mobile che, nel primo caso sarà costituita da un liquido e nel secondo da un gas. <br>
Tra l'analita e la fase stazionaria si formano dei legami deboli che trattengono momentaneamente l'analita in colonna: questi legami sono reversibili e vengono rotti e riformati innumerevoli volte durante la corsa cromatografica con l'effetto del rallentamento dell'analita rispetto al solvente puro. L'ordine di eluizione delle componenti presenti nel campione dipende dall'affinità che queste hanno con la fase stazionaria: tanto più questa è elevata e tanto più sono lunghi i tempi di ritenzione. L'unica variabile su cui si può intervenire per modificare i coefficienti di distribuzione degli analiti nelle due fasi è la composizione della fase mobile: la forza dell'interazione tra l'analita e la fase stazionaria infatti, aumenta all'aumentare della polarità dell'analita stesso, per cui le molecole a polarità maggiore saranno quelle che verranno eluite a tempi maggiori perché più saldamente trattenute in colonna. Per questo motivo infatti, per diminuire i tempi di ritenzione, si può andare ad aumentare la polarità del solvente secondo la serie eluotropica che consiste in una classificazione dei solventi in ordine crescente di potere eluente riferita all'allumina. Si misura il calore che si sviluppa mettendo a contatto allumina e il solvente: più l'interazione che si instaura tra le due è forte e più il solvente si trova avanti nella serie eluotropica.
Essendo: <br>
: A + M<sub>ads</sub> <math>\rightleftharpoons</math> A<sub>ads</sub> + M <br> <ref> Sadek, pag. 5</ref>
: con A = analita
: M = fase mobile <br>
La fase stazionaria è costituita da un film liquido che ricopre un supporto solido solitamente costituito da un materiale granulare e inerte. Il requisito fondamentale di questa tecnica è che la fase mobile e il liquido della fase stazionaria devono essere immiscibili tra loro pur presentando entrambe una certa affinità per gli analiti. Questo tipo di cromatografia si basa sul meccanismo di ripartizione dell'analita nei due solventi: la fase mobile e il film liquido della fase stazionaria. Il fattore da cui dipende la separazione è costituito dalla solubilità relativa dell'analita nei due liquidi (si parla infatti di cromatografia di ripartizione liquido-liquido). L'ordine di eluizione dipende dall'affinità dell'analita per la fase stazionaria: tanto più questi saranno solubili nel film costituente la fase stazionaria e tanto più a lungo verranno trattenuti in colonna. <br>
A seconda della polarità dei due solventi usati si avrà un diverso tipo di cromatografia:
* fase normale - si ha quando la fase stazionaria è più polare della fase mobile. Le miscele usate più comunemente come fase mobile prevedono l'uso di esano, <ref>Sadek, pag. 169</ref> che essendo apolare non interagisce con la fase stazionaria che è scelta invece molto polare, e un altro solvente come cloroformio o propan-2-olo. Quest'ultimo è chiamato solvente attivo o modificatore in quanto è in grado di competere con l'analita per i siti attivi della fase stazionaria. La concentrazione del solvente attivo che viene inserita nella miscela influenza molto l'eluizione: all'aumentare della concentrazione infatti la solubilità dell'analita nella fase mobile aumenta e di conseguenza il tempo di ritenzione diminuisce. La fase stazionaria invece presenta gruppi amino, ciano e diol;
* fase inversa - si ha quando la fase mobile è più polare della fase stazionaria. In questo caso la fase mobile è costituita da una miscela di acqua che, essendo molto polare, non interagisce con la fase stazionaria che è invece molto apolare, e un altro solvente attivo come metanolo, acetonitrile e tetraidrofurano. Una delle fase mobili più usata è una miscela 60/40 H<sub>2</sub>O/EtOH. <ref> Sadek, pag. 169 </ref> La fase stazionaria è invece solitamente costituita da C2, C8, C18, tenendo a mente il fatto che all'aumentare del numero di atomi di carbonio aumenta la capacità di ritenzione.<br>
La cromatografia di ripartizione a fase inversa è la più comune e la più usata delle due per la separazione di composti organici, in particolare miscele idrocarburiche. <br>
Molto spesso il film liquido è legato chimicamente alla fase stazionaria con legami covalenti attraverso silani e silanoli. <br>
 
La '''cromatografia di esclusione dimensionale''' è una tecnica che viene applicata prevalentemente a macromolecole organiche, in particolare viene usata per purificarle e determinare il loro peso molecolare, e per i polimeri. Tolta questa applicazione è solitamente poco utilizzata per analisi quantitative e impiegata soprattutto nella sintesi organica. <br>
La fase stazionaria è un solido o un gel che presenta dei pori di dimensioni note e opportune quali ad esempio la silice, il vetro o polimeri particolari. La silice è molto usata in quanto è più rigida e garantisce un impaccamento migliore, il che consente di adottare pressioni maggiori e al contempo una più vasta gamma di solventi.<ref> Skoog, pag. 927 </ref> In questo caso la fase mobile ha solo funzione di trasporto e la sua natura chimica non è particolarmente rilevante dal punto di vista della buona riuscita dell'analisi. Le molecole di analita che vengono disciolte nell'eluente vengono ripartite a seconda della loro capacità di penetrare nelle porosità della fase stazionaria e rimanervi intrappolate. Tanto più piccolo sarà il diametro delle particelle di analita e tanto più riusciranno a penetrare in profondità nella fase stazionaria e quindi tanto più a lungo verranno trattenute in colonna: le molecole troppo grandi non riusciranno ad entrare nei pori e usciranno dalla colonna per prime. <ref> McMaster, pag. 58 </ref><br>
Si possono definire alcuni parametri fondamentali in ambito di cromatografia ad esclusione dimensionale:
* limite di esclusione - massa della particella più piccola le cui dimensioni sono tali da impedirle di entrare all'interno delle porosità della fase stazionaria. Tutte le sostanze aventi massa molare pari o superiore al limite di esclusione verranno eluite insieme ed usciranno per prime dalla colonna;
Dal momento che il fattore discriminante per la separazione è la dimensione dei pori della fase stazionaria, prima di procedere con l'analisi è necessario costruire una curva di calibrazione usando degli standard a massa molare nota: quello che si va a valutare è la capacità della colonna di separarli. Grazie alla costruzione di questo grafico semi-logaritmico è possibile ricavare l'intervallo di frazionamento utile per la separazione. <br>
Sono inoltre presenti altre tipologie di colonne usate in HPLC e che prendono il nome di precolonne: tra queste troviamo la colonna scavenger e la colonna di guardia. <br>
La colonna scavenger, detta anche colonna di saturazione, è posizionata tra i recipienti di fase mobile e l'iniettore e viene usata per condizionare la fase mobile quando le condizioni operative sono tali da andare ad intaccare l'impaccamento della colonna analitica e dissolverla (a pH e a temperature elevate). La fase mobile, fluendo attraverso questa precolonna dissolve parte dell'impaccamento silicico fino ad arrivare alla saturazione, in questo modo quando l'eluente raggiunge la colonna analitica è già saturato con acido silicico e non intacca la fase stazionaria della colonna separativa. <ref>Skoog, pagg. 917-918 </ref> <br>
La colonna di guardia viene posizionata tra l'iniettore e la colonna analitica e il suo scopo è quello di rimuovere preventivamente le impurezze presente nel campione che potrebbero otturare o danneggiare la colonna separativa. È impaccata con una fase stazionaria uguale o simile alla colonna analitica e deve essere pulita o sostituita regolarmente per evitare che del materiale da essa trattenuta possa intaccare la colonna. È solitamente di piccole dimensioni (1-3 cm) e non prende parte al processo separativo. <ref> McMaster, pag. 71 </ref>
 
==Rivelatori==
 
Tra i rivelatori più usati troviamo:
* Fotometro UV-visibile a λ fissa - misura l'assorbanza dell'eluato a lunghezza d'onda fissa. La sorgente più usata è la lampada a vapori di mercurio la quale è una sorgente a righe: l'intensità maggiore che si registra con questa sorgente corrisponde alla lunghezza d'onda di 254 nm. <ref> Skoog, pag. 687 </ref> La radiazione attraversa la cella contenente il campione per poi arrivare al fotodiodo diminuita di intensità: secondo la legge di Lambert Beer infatti l'intensità della luce assorbita è proporzionale alla concentrazione dell'analita. Il grande vantaggio di questo rivelatori è il fatto che sia estremamente sensibile grazie all'elevata intensità della radiazione che viene prodotta dalla lampada a vapori di Hg, per contro però è caratterizzata da una scarsa selettività dovuta al fatto che si può lavorare solamente ad una lunghezza d'onda;
* Spettrofotometro UV-visibile a λ variabile - è il rivelatore più usato in HPLC. La sorgente luminosa è costituita da una lampada a deuterio che genera una radiazione UV continua che copre un intervallo di lunghezze d'onda che vanno da 190 a 425 nm. <ref>Grotti, pag. 162 </ref> La radiazione così ottenuta viene poi indirizzata ad un monocromatore a reticolo: in questo modo viene scissa nelle sue componenti, il che consente di selezionare la lunghezza d'onda desiderata in un range piuttosto ampio. La radiazione selezionata incide sulla cella a flusso contenente il campione, la attraversa e viene parzialmente assorbita: la diminuzione dell'intensità della luce trasmessa viene misurata da un fotodiodo ed è proporzionale alla concentrazione di analita. Il fatto che si possa lavorare a diverse lunghezze d'onda presenta numerosi vantaggi: elevata versatilità in quanto si può lavorare a diverse λ, elevata sensibilità data dal fatto che si può scegliere la λ ottimale per un determinato analita, elevata selettività in quanto in caso di sovrapposizione di picchi si può cambiare λ di lavoro per minimizzare l'assorbimento degli interferenti;
* Spettrofotometro UV-vis con Diode-Array - la sorgente impiegata è costituita da una lampada a deuterio che genera una radiazione UV che viene indirizzata ad un monocromatore a reticolo: in questo modo viene scissa nelle sue componenti. Il fascio luminoso non monocromatico passa nella cella a flusso, interagisce con l'analita, esce dalla cella e viene scomposto da un policromatore. A questo punto ogni λ viene focalizzata su un diverso fotodiodo di un array e misurata simultaneamente. I vantaggi di questo rivelatore sono gli stessi dello spettrofotometro UV-visibile a λ variabile ma i costi sono più elevati. Con questo rivelatore si riesce però ad ottenere lo spettro completo di assorbimento dell'eluato in ogni istante dell'analisi;
* Spettrofluorimetro - usato solo per sostanze fluorescenti o derivatizzabili. È però uno dei rivelatori più sensibile e selettivo, molto più dei rivelatori UV-vis;
178

contributi

Menu di navigazione