Probabilità/Introduzione: differenze tra le versioni

Jump to navigation Jump to search
m
Bot: Correggo errori comuni (tramite La lista degli errori comuni V 1.0)
(Corretto: "riguardo alla")
m (Bot: Correggo errori comuni (tramite La lista degli errori comuni V 1.0))
 
 
 
La teoria della [[Probabilità]] formula una conoscenza incompleta riguardante la probabilità di un evento. Ad esempio, un meteorologo potrebbe dire che c'è un 60% di possibilità che domani piova. Questo significa che in 6 casi su 10 , quando la terra si trova nelle stesse condizioni, pioverà .
 
Una '' probabilità '' è un numero reale <math>p \in [0,1]</math>. Nel linguaggio comune, il numero è generalmente espresso in percentuale (da 0% a 100%) anziché in numero decimale (cioè, una probabilità di 0,25 si esprime come 25%). Una probabilità del 100% significa che un evento è certo. Nel linguaggio quotidiano, con una probabilità dello 0% si intende che l'evento è impossibile, ma (di solito ci sono un'infinità di possibili risultati) un evento, a cui viene attribuito originariamente una probabilità dello 0%, può essere quello che effettivamente avviene. In alcune situazioni, è certo che all'evento che accade è stato all'inizio attribuito una probabilità pari a zero (ad esempio, nel selezionare un numero tra 0 e 1, la probabilità di selezionare un qualsiasi numero è zero, ma è certo che un tale numero verrà selezionato).
Le probabilità fisiche, che sono anche chiamate probabilità oggettive o di frequenza, sono associate a sistemi fisici casuali come la roulette, i dadi e gli atomi radioattivi. In tali sistemi, un determinato tipo di evento (come l'uscita di un sei nei dadi) tende a verificarsi con una percentuale continua o a 'frequenza relativa', in un lungo periodo di prove. Le probabilità fisiche spiegano, o sono chiamate a spiegare, queste frequenze stabili. Così parlare di probabilità fisica ha senso solo quando si tratta di esperimenti casuali ben definiti. I due tipi principali di teoria della probabilità fisica sono i conti di frequentista (come Venn) e i conti di propensione.
 
Le frequenze relative sono sempre comprese tra 0% (caso che non accade mai) e il 100% (caso che accade sempre), quindi in questa teoria le probabilità sono compresi tra 0% e 100%. Secondo la teoria di frequenza di probabilità, cosa significa dire "la probabilità che A si verifica è p%" è che se si ripete l'esperimento più e più volte, in modo indipendente e in condizioni sostanzialmente identiche, la percentuale del tempo che A si verifica tenderà a p. Ad esempio, nell'ambito della teoria della frequenza, dire che la probabilità che in una moneta esca testa è del 50% , significa che se si lancia la moneta più e più volte, in modo indipendente, il rapporto tra il numero di volte che esce testa e il numero totale di lanci si avvicina a un valore (limite) del 50% e cresce dal numero di lanci. Poiché il rapporto di lanci con risultato testa è sempre compresa tra 0% e 100%, quando esiste la probabilità che deve essere compreso tra 0% e 100%.
 
Nella teoria soggettiva della probabilità, la probabilità misura il "grado di convinzione" di chi parla che si verifichi l'evento, su una scala da 0% (incredulità completa che l'evento accadrà) al 100% (certezza che l'evento accadrà). Secondo la teoria soggettiva, per noi cosa significa dire che "la probabilità che A si verifica è 2/3" che crediamo che A accadrà il doppio delle volte piuttosto che A non accadrà. La teoria soggettiva è particolarmente utile (in senso) per assegnare alla probabilità di eventi che, in linea di principio, possono verificarsi solo una volta. Ad esempio, come si potrebbe assegnare un significato di un'affermazione come "c'è una probabilità del 25% di un terremoto sulla faglia di San Andreas, con magnitudo 8 o superiore prima del 2050?" (Per ulteriori discussioni delle teorie della probabilità e le loro applicazioni a terremoti vedere Freedman e Stark, 2003). È molto difficile da usare la teoria degli esiti della stessa probabilità o la teoria di frequenza di dare un senso all'affermazione.
seguito da (iii) per P(φ) = 0. Per provare questo, prendiamo F = φ e osserviamo che E e φ sono eventi disgiunti. Quindi, dall'assioma (iii), abbiamo
P (E ∪ φ) = P (E) + P (φ) or P(E) = P(E) + P (φ) i.e. P (φ) = 0.
Poniamo S come lo spazio campione che contiene i risultati ω1 , ω2 ,...,ωn , i.e.,
S = {ω1, ω2, ..., ωn}
 
It follows from (iii) that P(φ) = 0. To prove this, we take F = φ and note that E and φ are disjoint events. Therefore, from axiom (iii), we get
P (E ∪ φ) = P (E) + P (φ) or P(E) = P(E) + P (φ) i.e. P (φ) = 0.
Let S be a sample space containing outcomes ω1 , ω2 ,...,ωn , i.e.,
S = {ω1, ω2, ..., ωn}
 
9 240

contributi

Menu di navigazione