Le formule di addizione e sottrazione servono per esprimere le funzioni goniometriche di una somma (o sottrazione) di due angoli di cui sono già note le funzioni.[1]
Le formule di duplicazione, che si ricavano dalle precedenti, servono per esprimere le funzioni goniometriche di un angolo doppio di un angolo di cui si conoscono già le funzioni.
Le formule di bisezione servono per esprimere le funzioni goniometriche di un angolo pari alla metà di un angolo di cui si conoscono già le funzioni.[2]
Le formule di prostaferesi trasformano somme e sottrazioni di funzioni goniometriche in prodotti.
Le formule inverse delle formule di prostaferesi si chiamano formule di Werner.
La formula di partenza può essere riscritta come:
Da cui, utilizzando la formula di addizione per il seno, si ottiene:
Utilizzando le relazioni che legano le funzioni trigonometriche di angoli opposti, si ottiene:
Da cui, semplificando e raccogliendo, si ottiene:
La formula di partenza può essere riscritta come:
Da cui, utilizzando la formula di addizione per il seno, si ottiene:
Da cui, utilizzando le relazioni che legano le funzioni trigonometriche di angoli opposti, si ottiene:
Da cui, semplificando e raccogliendo, si ottiene:
La formula di partenza può essere riscritta come:
Da cui, utilizzando la formula di addizione per il coseno, si ottiene:
Da cui, utilizzando le relazioni che legano le funzioni trigonometriche di angoli opposti, si ottiene:
Da cui, semplificando e raccogliendo, si ottiene:
La formula di partenza può essere riscritta come:
Da cui, utilizzando la formula di addizione per il coseno, si ottiene:
Da cui, utilizzando le relazioni che legano le funzioni trigonometriche di angoli opposti, si ottiene:
Da cui, semplificando e raccogliendo, si ottiene:
quindi arrivederci
- con
La formula di partenza può essere riscritta, in virtù della definizione di tangente, come:
Da cui, giacché la condizione sugli angoli garantisce che i coseni non siano nulli:
Da cui, raccogliendo il denominatore:
Da cui, giacché il numeratore è il risultato delle formule di addizione e sottrazione per il seno, si ottiene per sostituzione:
- con
La formula di partenza può essere riscritta, in virtù della definizione di cotangente, come:
Da cui, giacché la condizione sugli angoli garantisce che i seni non siano nulli:
Da cui, raccogliendo il denominatore:
Da cui, giacché il numeratore è il risultato delle formule di addizione e sottrazione per il seno, si ottiene per sostituzione:
Le formule di Werner trasformano prodotti di funzioni goniometriche in somme e sottrazioni.
- ↑ La formula per la tangente si ottiene dividendo numeratore e denominatore per cos α cos β.
- ↑ Le formule per la tangente si ottengono considerando che sin2 α = 1 – cos2 = (1 – cos α)(1 + cos α).