Dimostrazione che 22/7 è maggiore di π
Il numero razionale 22/7 ampiamente usato si approssima a π meglio del più usato 3,14. Esso è una ridotta della espansione in frazione continua di π. 22/7 è maggiore di π, come fu dimostrato da Archimede. Conoscendo l'espansione decimale di π, la diseguaglianza può ovviamente essere verificata confrontando le due espansioni:
Nonostante molti conoscano alcune cifre decimali di π dalla scuola, pochi sanno però come queste siano calcolate. Nel seguito si dimostrerà che 22/7 è maggiore di pi greco per via puramente analitica. Si tratta di una dimostrazione semplice, nel senso che è corta e diretta, e richiede solo alcune conoscenze di analisi matematica.
L'idea
[modifica | modifica sorgente]quindi
I dettagli
[modifica | modifica sorgente]Il fatto che l'integrale sia positivo segue dal fatto che l'integranda è il quoziente di due quantità non negative, essendo esse la somma o il prodotto di potenze pari di numeri reali. Quindi l'integrale tra 0 e 1 è positivo.
Rimane da dimostrare che l'integrale è uguale alla quantità desiderata:
avendo usato arctan(1) = π/4 e arctan(0)=0.
Apparizione nella Putnam Competition
[modifica | modifica sorgente]La valutazione di questo integrale fu il primo problema nel 1968 della Putnam Competition.
Collegamenti esterni
[modifica | modifica sorgente]