Dimostrazione che 22/7 è maggiore di π

Wikibooks, manuali e libri di testo liberi.
Jump to navigation Jump to search

Il numero razionale 22/7 ampiamente usato si approssima a π meglio del più usato 3,14. Esso è una ridotta della espansione in frazione continua di π. 22/7 è maggiore di π, come fu dimostrato da Archimede. Conoscendo l'espansione decimale di π, la diseguaglianza può ovviamente essere verificata confrontando le due espansioni:

Nonostante molti conoscano alcune cifre decimali di π dalla scuola, pochi sanno però come queste siano calcolate. Nel seguito si dimostrerà che 22/7 è maggiore di pi greco per via puramente analitica. Si tratta di una dimostrazione semplice, nel senso che è corta e diretta, e richiede solo alcune conoscenze di analisi matematica.

L'idea[modifica]

quindi

I dettagli[modifica]

Il fatto che l'integrale sia positivo segue dal fatto che l'integranda è il quoziente di due quantità non negative, essendo esse la somma o il prodotto di potenze pari di numeri reali. Quindi l'integrale tra 0 e 1 è positivo.

Rimane da dimostrare che l'integrale è uguale alla quantità desiderata:

avendo usato arctan(1) = π/4 e arctan(0)=0.

Apparizione nella Putnam Competition[modifica]

La valutazione di questo integrale fu il primo problema nel 1968 della Putnam Competition.

Collegamenti esterni[modifica]