Laboratorio di chimica in casa/Le leggi di combinazione degli elementi

Wikibooks, manuali e libri di testo liberi.
Jump to navigation Jump to search

Water molecule 3D.svg
Interazioni dipolari acqua.png

Nell'ambiente in cui viviamo non troviamo quasi mai atomi singoli, ma composti chimici in cui essi sono combinati fra loro.
Ciò che tiene insieme due atomi è chiamato legame chimico. Esso è dovuto all'attrazione tra le cariche di segno opposto dei nuclei atomici e quelle degli elettroni di legame; una specie di tiro alla fune fra atomi, in cui la corda sono due elettroni. Una situazione simile si ha quando si collegano due calamite tramite un chiodo; le due calamite sono i due atomi ed il chiodo in mezzo è il legame chimico che li tiene uniti.
Ciò crea un aggregato di atomi, che nel linguaggio chimico è chiamato complesso. L'immagine in alto a destra rappresenta un complesso semplice, in cui due atomi di idrogeno sono legati ad uno di ossigeno. Quando si hanno un numero definito di atomi legati assieme si parla di molecola, in questo caso quella dell'acqua.
Tramite altri legami elettrostatici (più deboli) le molecole si attraggono fra loro ed è così che si forma l'aggregato che noi chiamiamo sostanza chimica.
Gli atomi tuttavia non si combinano in maniera casuale come fanno pezzi di ferro e calamite: esistono diversi tipi di legami chimici, ed essi seguono precise regole di combinazione.

La prima (per importanza) dice che un atomo, quando si combina con un altro, lo fa solo con gli elettroni presenti nel suo livello più esterno (chiamati elettroni di valenza).
Questo perché, come già detto in precedenza, gli elettroni in uno stesso livello energetico hanno tutti la stessa distanza dal nucleo, e quindi sono attratti tutti con la stessa forza, ed essendo nel livello più esterno sono quelli che risentono di meno di questa attrazione; così essi possono essere attratti da un atomo vicino per formare un legame chimico, mentre quelli nel livello sottostante sono molto più vicini al nucleo e quindi occorre molta più energia per allontanarli da esso, quasi sempre troppa per creare un legame stabile.
Per questo motivo, quando verranno mostrate alcune combinazioni degli elementi, si potranno rappresentare gli atomi semplicemente disegnando il loro simbolo circondato dagli elettroni di valenza. Questo tipo di rappresentazione atomica è detta struttura di Lewis.

Fosforo valenza Lewis.png

Va tuttavia fatto notare che non sempre gli elettroni di valenza (cioè quelli che può scambiare) sono tutti quelli presenti nel livello più esterno. Per questo motivo la tavola periodica è divisa in tre blocchi in cui i gruppi di valenza si ripetono periodicamente.

Blocchi tavola periodica.png
  • Gli elementi rappresentativi sono evidenziati in rosa ed il loro blocco è diviso in gruppi numerati con numeri romani accostati alla lettera A (sopra le caselle). Essi sono in grado di mettere in compartecipazione tutti i loro elettroni, eccezion fatta per i gas nobili, poco reattivi poiché nel loro guscio di valenza gli elettroni sono già tutti appaiati.
Questi elementi sono chiamati rappresentativi perché le loro proprietà chimiche sono abbastanza periodiche, regolari, e perciò sono esempi affidabili, rappresentativi delle leggi chimiche illustrate a breve.
  • I metalli di transizione sono evidenziati in verde. Questo è il primo gruppo che non rispetta del tutto le regole di periodicità. Infatti gli elementi dei primi 5 gruppi posseggono da 3 (Sc, Y, La, Ac) ad 8 (Fe, Re, Os) elettroni nel loro guscio di valenza, e (a seconda delle condizioni) sono in grado di impiegarli tutti in legami chimici. I metalli del gruppo del cobalto (Co) e del nichel (Ni) tuttavia posseggono rispettivamente 9 e 10 elettroni nel loro guscio di valenza, ma quelli che mettono a disposizione in legami chimici sono al massimo 3 o 4. Lo stesso accade per i metalli dei due gruppi successivi, rame e zinco, chiamati gruppo B-I e B-II proprio perché mettono in compartecipazione solitamente uno o due elettroni.[1]
  • I metalli di transizione interna, in azzurro, sono l'ultimo blocco e sono molto rari nella vita comune (compresi i laboratori non specializzati). le loro proprietà chimiche non sono periodiche (come accade anche per alcuni metalli di transizione) e tendono a mettere in compartecipazione soprattutto 3 elettroni (2 in composti meno comuni).

A seconda delle loro caratteristiche chimiche due elementi possono combinarsi seguendo due modalità di legame: essi possono limitarsi ad appaiare gli elettroni che si trovano spaiati nel loro guscio di valenza...

Fluoruro di cloro Lewis.png Acqua Lewis.png Carbon-dioxide-octet-Lewis-2D.png
Formule di Lewis del fluoruro di cloro, dell'acqua e dell'anidride carbonica

Generalmente gli elementi rappresentativi tendono a mettere in compartecipazione tutti i loro elettroni spaiati, poiché gli orbitali senza elettroni lasciano spazio ad altri elettroni che vi cadono per l'attrazione elettrostatica del nucleo. Il numero di orbitali nel guscio di valenza di un elemento rappresentativo è 4, e di conseguenza essi tenderanno ad occuparli tutti raggiungendo il numero di 8 elettroni in esso. Per questo motivo tale consuetudine è chiamata regola dell'ottetto (anche se esistono numerose eccezioni, per esempio l'intero blocco dei metalli di transizione).

La seconda modalità è instaurare un legame dativo: un elemento che ha già raggiunto l'ottetto (quindi già parte di una molecola)[2] può cedere una coppia di elettroni già appaiati nel guscio di valenza (detta coppia solitaria) ad un altro atomo abbastanza "forte" da sottrarglieli.

Legame dativo 1.png

Questo tipo di legame può avere due sensi: l'atomo al centro della molecola può possedere coppie solitarie da donare ad altri atomi (immagine sopra), ma una volta impoverito della propria nube elettronica la carica del suo nucleo sarà scoperta, e quindi l'atomo sarà in grado di attirare gli elettroni di altre entità molecolari creando una molecola ancora più grande.

Legame dativo 2.png

Vi è in fine la possibilità che due molecole si leghino riarrangiando i propri legami chimici senza cambiarne la natura (un dativo rimane un dativo, un non dativo rimane non dativo) semplicemente ricollocando gli elettroni di legame per lasciar spazio ad un'altra molecola.

Idratazione SO3.png
Verde: elettroni spaiati dello zolfo, nero: elettroni appaiati dello zolfo, rosso: elettroni dell'ossigeno, viola: doppietto elettronico dell'acqua attratto dallo zolfo.
Gli elettroni sono stati disegnati con colori diversi per mostrare che cambiano di posto ma che la loro natura di legame non cambia.

Note[modifica]

  1. Il motivo di ciò sta nel fatto che in realtà non tutti gli orbitali in uno stesso livello energetico sono uguali: quelli in cui orbitano gli elettroni dei primi 5 elementi del gruppo sono di tipo d e contengono solo elettroni spaiati, mentre quelli degli elementi successivi (VIII-B, I-B, II-B) iniziano a riempirsi. Gli elementi successivi a quelli del blocco dei metalli di transizione sono elementi rappresentativi e riprendono la sequenza dei gruppi assumendo valenze diversa perché nello stesso livello utilizzano un altro tipo di orbitali ancora, il tipo p, e quindi gli elettroni sottostanti non sono più in grado di essere messi in compartecipazione perché ormai troppo attratti dal nucleo. Il fatto però di distinguere gli orbitali per tipo può essere per ora tralasciato, poiché verrà spiegato meglio in seguito come capire quanti elettroni un atomo può condividere.
  2. A parte i gas nobili che hanno già 8 elettroni nel guscio di valenza e quindi possono fare solo dativi, e questo senza far parte di alcuna molecola.
1leftarrow.png Modulo precedente

La configurazione elettronica

1uparrow.png Torna a

Parte introduttiva

1rightarrow.png Modulo successivo

L'elettronegatività