Analisi complessa/Numeri complessi: differenze tra le versioni

Wikibooks, manuali e libri di testo liberi.
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
wikifico
Riga 11: Riga 11:
dove I: = (0,1).
dove I: = (0,1).


L'analogia tra <math>\mathbb{C}</math> ed <math>\mathbb{R}^{2}</math> (è immediato vedere che i due insiemi sono in corrispondenza biunivoca) suggerisce di rappresentare il campo complesso come l'insieme dei punti di un piano cartesiano. Definiamo poi, dato un numero
L'analogia tra <math>\mathbb{C}</math> ed <math>\mathbb{R}^{2}</math> (è immediato vedere che i due insiemi sono in corrispondenza biunivoca) suggerisce di rappresentare il campo complesso come l'insieme dei punti di un piano cartesiano. Dato un numero
:<math>z \in \mathbb{C}=x+Iy=(x,y)</math>
:<math>z \in \mathbb{C}=x+Iy=(x,y)</math>
definiamo:
definiamo:
Riga 35: Riga 35:
:<math>z =\rho e^{I\theta}\!</math>
:<math>z =\rho e^{I\theta}\!</math>


==TEOREMA 1.1.2.==
==Proprietà==
;Teorema 1.1.2
Le quantità sopra definite godono di una serie di proprietà algebriche: siano <math>z_1,z_2\in \mathbb{C}</math>, con <math>z_1=x_1+Iy_1=\rho_1 e^{I\theta_1}</math> e <math>z_2=x_2+Iy_2=\rho_2 e^{I\theta_1}</math>
Le quantità sopra definite godono di una serie di proprietà algebriche: siano <math>z_1,z_2\in \mathbb{C}</math>, con <math>z_1=x_1+Iy_1=\rho_1 e^{I\theta_1}</math> e <math>z_2=x_2+Iy_2=\rho_2 e^{I\theta_1}</math>

Versione delle 20:06, 12 feb 2009

Indice del libro
Definizione 1.1.1.
Definiamo l'insieme dei numeri complessi come l'insieme delle coppie ordinate di numeri reali con somma e prodotto definiti come

È facile convincersi che con queste definizioni ha le proprietà algebriche di un campo (vedi sezione 2.3). Inoltre, assimilando i numeri della forma ai numeri reali, e' possibile mostrare che ogni numero complesso si può scrivere come

dove I: = (0,1).

L'analogia tra ed (è immediato vedere che i due insiemi sono in corrispondenza biunivoca) suggerisce di rappresentare il campo complesso come l'insieme dei punti di un piano cartesiano. Dato un numero

definiamo:

  • il coniugato
  • la parte reale
  • la parte immaginaria
  • il modulo

Avendo rappresentato i numeri complessi su un piano cartesiano, si può ora passare ad una rappresentazione in coordinate polari. Si può quindi scrivere come

Evidentemente per z = 0 la forma polare è mal definita. è il modulo di e l' argomento , che è definito a meno di multipli interi di . Il valore principale dell'argomento è il valore scelto in , .

Definendo poi tramite la formula di Eulero

(relazione che sara' giustificata in seguito) avremo

Proprietà

Teorema 1.1.2

Le quantità sopra definite godono di una serie di proprietà algebriche: siano , con e

Inoltre si nota che soddisfa le definizioni di una distanza , e di conseguenza si puo' considerare uno spazio metrico.