Analisi matematica I/Definizione di limite

Wikibooks, manuali e libri di testo liberi.
Jump to navigation Jump to search

Principi di insiemistica e funzioni elementari

  1. Numeri naturali
  2. Numeri interi
  3. Numeri razionali
  4. Numeri reali
  5. Numeri reali (seconda parte)
  6. Numeri complessi
  7. Funzioni
  8. Funzioni circolari
  9. Funzioni radice, esponenziale e logaritmica

Le successioni e le serie numeriche in

  1. Successioni reali
  2. Limiti di successioni reali
  3. Teoremi sulle successioni
  4. Algebra dei limiti delle successioni
  5. Esistenza del limite di una successione
  6. Limiti inferiori e superiori
  7. Forme indeterminate di successioni
  8. Serie numeriche

Limiti di funzioni reali a una variabile reale

  1. Punti di accumulazione e chiusura di un insieme
  2. Compattezza di un insieme
  3. Definizione di limite per funzioni reali di variabile reale
  4. Esistenza del limite per funzioni reali di variabile reale
  5. Algebra dei limiti
  6. Teorema del confronto e teorema di Cauchy

Monotonia, continuità, massimi, minimi e uniforme continuità

  1. Analisi matematica I/Funzioni monotone
  2. Analisi matematica I/Funzioni continue reali di variabile reale
  3. Analisi matematica I/Massimi e minimi di una funzione continua
  4. Analisi matematica I/Funzioni uniformemente continue


Calcolo differenziale in e studio di funzioni

  1. Analisi matematica I/Funzioni derivabili e derivata di una funzione
  2. Analisi matematica I/Algebra delle derivate
  3. Analisi matematica I/Teorema di Fermat, di Rolle, di Lagrange, di Cauchy
  4. Analisi matematica I/Test di monotonia, teorema Darboux, di De L'Hopital
  5. Analisi matematica I/Polinomi di Taylor
  6. Analisi matematica I/Studio di funzioni reali a valori reali
  7. Analisi matematica I/Funzioni convesse

Calcolo integrale secondo Riemann per funzioni reali di una variabile reale

  1. Analisi matematica I/Integrale di Riemann
  2. Analisi matematica I/Altri criteri di integrabilità secondo Riemann
  3. Analisi matematica I/Calcolo degli integrali di Riemann
  4. Analisi matematica I/Importanti teoremi del calcolo integrale
  5. Analisi matematica I/Integrale generalizzato

Successioni e serie di funzioni

  1. Analisi matematica I/Successioni di funzioni
  2. Analisi matematica I/Serie di funzioni


VECCHIO Elementi di base

  1. Gli insiemi e i vari tipi di insiemi
  2. Note storiche sugli insiemi
  3. I numeri reali
  4. I numeri complessi
  5. Sommatorie
  6. progressione geometrica
  7. fattoriale di n
  8. formula di Newton
  9. Potenze e radicali
  10. Esponenziali e logaritmi
  11. Insiemi infiniti
  12. Massimi e minimi
  13. Funzioni

Serie e successioni

  1. Successioni: definizione
  2. Limiti: definizione
  3. Successioni monotone
  4. Calcolo dei limiti
  5. Limite di successioni
  6. Il numero di Nepero (e)
  7. Confronti, stime asintotiche e gerarchia degli infiniti
  8. Limiti notevoli
  9. Serie numeriche: definizione
  10. Serie a termini non negativi
  11. Serie a termini di segno variabile

Funzioni di una variabile, limiti e continuità

  1. Limiti di funzioni da R a R
  2. Limiti di funzioni da Rn a Rm
  3. Funzioni numeriche e generalità
  4. Grafico di una funzione
  5. Funzioni limitate
  6. Funzioni simmetriche, pari e dispari
  7. Funzioni monotone
  8. Funzioni periodiche
  9. Limiti, continuità, asintoti
  10. Funzioni elementari: funzioni potenza, esponenziali e logaritmiche, trigonometriche
  11. Funzioni composte e inverse (invertibili e non invertibili)
  12. Funzioni trigonometriche inverse

Calcolo differenziale per funzioni di una variabile

  1. Introduzione
  2. Il rapporto incrementale
  3. Derivata di una funzione: derivata e retta tangente; derivate di funzioni elementari; punti angolosi, cuspidi, flessi a tangente verticale
  4. Regole di calcolo delle derivate: algebra delle derivate; derivate di una funzione composta; derivata di funzione inversa
  5. Le derivate fondamentali
  6. Il teorema del valor medio e le sue conseguenze: punti stazionari, massimi e minimi locali; teorema del valor medio e test di monotonia;
  7. Il teorema di de L’Hospital
  8. Calcolo differenziale e approssimazioni: differenziale e approssimazione lineare
  9. o piccolo
  10. Significato geometrico della derivata seconda, derivata seconda, concavità e convessità
  11. Formula di Taylor del secondo ordine & formula di Taylor di ordine n
  12. Studio del grafico di una funzione

Calcolo integrale per funzioni di una variabile

  1. L’integrale come limite di somme
  1. Proprietà dell'integrale
  2. Il teorema fondamentale del calcolo integrale
  3. Metodo di ricerca della primitiva
  4. Calcolo di integrali indefiniti e definiti: integrali immediati, per scomposizione e per sostituzione; integrazione per parti
  5. Funzioni integrabili
  6. integrali generalizzati: integrali di funzioni discontinue
  7. Integrazione di funzioni non limitate
  8. Criteri di integrabilità al finito
  9. Integrazione su intervalli illimitati
  10. Criteri di integrabilità all’infinito
  11. Ricerca delle primitive per alcune classi di funzioni: integrazione di una funzione razionale
  12. Integrazione delle funzioni trigonometriche

Definizione[modifica]

In matematica, il concetto di limite serve a descrivere l'andamento di una funzione all'avvicinarsi del suo argomento a un dato valore, oppure al crescere illimitato di tale argomento (per esempio una successione). I limiti si utilizzano in tutti i rami dell'analisi matematica, in quanto sono usati per definire la continuità, la derivazione e l'integrazione.

Il limite di una successione è definito come segue:

Si dice che una successione an ha limite uguale a a (o tende ad a) se e solo se, qualunque sia la scelta delle quantità positive δ ed ν, si ha che per ogni

left/

Per le funzioni, ove i valori non sono discreti ed il cui punto di interesse può essere qualunque, si definisce il concetto di intorno di un punto x , ovvero l'insieme dei punti che si trovano entro una certa distanza dal punto x, chiamato il centro dell'intorno.

Il limite di una funzione è quindi definito come:

Si dice che una funzione ha limite uguale a A per x che tende ad a se e solo se, qualunque sia la scelta delle quantità positive δ ed ε, esiste un intorno I0 del punto a (al più privo di x0) e di larghezza δ tale che per ogni

Limite di una funzione

Va notato che l'intorno richiesto per la definizione del limite può anche non contenere il punto x0. Il limite descrive a quale valore una funzione si avvicina indefinitamente, quando la sua variabile si avvicina ad un certo valore, che potrebbe anche essere addirittura al di fuori del dominio della funzione. Quale sia il valore (se esiste) della funzione nel punto x0 è irrilevante ai fini del limite.

Una definizione alternativa usa i limiti di successione[1]

Limite destro e limite sinistro di funzioni[modifica]

  1. Marcellini P, Sbordone C, Calcolo, Liguori editore, Napoli