Analisi matematica I/Numeri reali (seconda parte)

Wikibooks, manuali e libri di testo liberi.
Jump to navigation Jump to search

Principi di insiemistica e funzioni elementari

  1. Numeri naturali
  2. Numeri interi
  3. Numeri razionali
  4. Numeri reali
  5. Numeri reali (seconda parte)
  6. Numeri complessi
  7. Funzioni
  8. Funzioni circolari
  9. Funzioni radice, esponenziale e logaritmica

Le successioni e le serie numeriche in

  1. Successioni reali
  2. Limiti di successioni reali
  3. Teoremi sulle successioni
  4. Algebra dei limiti delle successioni
  5. Esistenza del limite di una successione
  6. Limiti inferiori e superiori
  7. Forme indeterminate di successioni
  8. Serie numeriche

Limiti di funzioni reali a una variabile reale

  1. Punti di accumulazione e chiusura di un insieme
  2. Compattezza di un insieme
  3. Definizione di limite per funzioni reali di variabile reale
  4. Esistenza del limite per funzioni reali di variabile reale
  5. Algebra dei limiti
  6. Teorema del confronto e teorema di Cauchy

Monotonia, continuità, massimi, minimi e uniforme continuità

  1. Analisi matematica I/Funzioni monotone
  2. Analisi matematica I/Funzioni continue reali di variabile reale
  3. Analisi matematica I/Massimi e minimi di una funzione continua
  4. Analisi matematica I/Funzioni uniformemente continue


Calcolo differenziale in e studio di funzioni

  1. Analisi matematica I/Funzioni derivabili e derivata di una funzione
  2. Analisi matematica I/Algebra delle derivate
  3. Analisi matematica I/Teorema di Fermat, di Rolle, di Lagrange, di Cauchy
  4. Analisi matematica I/Test di monotonia, teorema Darboux, di De L'Hopital
  5. Analisi matematica I/Polinomi di Taylor
  6. Analisi matematica I/Studio di funzioni reali a valori reali
  7. Analisi matematica I/Funzioni convesse

Calcolo integrale secondo Riemann per funzioni reali di una variabile reale

  1. Analisi matematica I/Integrale di Riemann
  2. Analisi matematica I/Altri criteri di integrabilità secondo Riemann
  3. Analisi matematica I/Calcolo degli integrali di Riemann
  4. Analisi matematica I/Importanti teoremi del calcolo integrale
  5. Analisi matematica I/Integrale generalizzato

Successioni e serie di funzioni

  1. Analisi matematica I/Successioni di funzioni
  2. Analisi matematica I/Serie di funzioni


VECCHIO Elementi di base

  1. Gli insiemi e i vari tipi di insiemi
  2. Note storiche sugli insiemi
  3. I numeri reali
  4. I numeri complessi
  5. Sommatorie
  6. progressione geometrica
  7. fattoriale di n
  8. formula di Newton
  9. Potenze e radicali
  10. Esponenziali e logaritmi
  11. Insiemi infiniti
  12. Massimi e minimi
  13. Funzioni

Serie e successioni

  1. Successioni: definizione
  2. Limiti: definizione
  3. Successioni monotone
  4. Calcolo dei limiti
  5. Limite di successioni
  6. Il numero di Nepero (e)
  7. Confronti, stime asintotiche e gerarchia degli infiniti
  8. Limiti notevoli
  9. Serie numeriche: definizione
  10. Serie a termini non negativi
  11. Serie a termini di segno variabile

Funzioni di una variabile, limiti e continuità

  1. Limiti di funzioni da R a R
  2. Limiti di funzioni da Rn a Rm
  3. Funzioni numeriche e generalità
  4. Grafico di una funzione
  5. Funzioni limitate
  6. Funzioni simmetriche, pari e dispari
  7. Funzioni monotone
  8. Funzioni periodiche
  9. Limiti, continuità, asintoti
  10. Funzioni elementari: funzioni potenza, esponenziali e logaritmiche, trigonometriche
  11. Funzioni composte e inverse (invertibili e non invertibili)
  12. Funzioni trigonometriche inverse

Calcolo differenziale per funzioni di una variabile

  1. Introduzione
  2. Il rapporto incrementale
  3. Derivata di una funzione: derivata e retta tangente; derivate di funzioni elementari; punti angolosi, cuspidi, flessi a tangente verticale
  4. Regole di calcolo delle derivate: algebra delle derivate; derivate di una funzione composta; derivata di funzione inversa
  5. Le derivate fondamentali
  6. Il teorema del valor medio e le sue conseguenze: punti stazionari, massimi e minimi locali; teorema del valor medio e test di monotonia;
  7. Il teorema di de L’Hospital
  8. Calcolo differenziale e approssimazioni: differenziale e approssimazione lineare
  9. o piccolo
  10. Significato geometrico della derivata seconda, derivata seconda, concavità e convessità
  11. Formula di Taylor del secondo ordine & formula di Taylor di ordine n
  12. Studio del grafico di una funzione

Calcolo integrale per funzioni di una variabile

  1. L’integrale come limite di somme
  1. Proprietà dell'integrale
  2. Il teorema fondamentale del calcolo integrale
  3. Metodo di ricerca della primitiva
  4. Calcolo di integrali indefiniti e definiti: integrali immediati, per scomposizione e per sostituzione; integrazione per parti
  5. Funzioni integrabili
  6. integrali generalizzati: integrali di funzioni discontinue
  7. Integrazione di funzioni non limitate
  8. Criteri di integrabilità al finito
  9. Integrazione su intervalli illimitati
  10. Criteri di integrabilità all’infinito
  11. Ricerca delle primitive per alcune classi di funzioni: integrazione di una funzione razionale
  12. Integrazione delle funzioni trigonometriche

I numeri reali[modifica]

Proprietà di [modifica]

  1. è un campo commutativo e totalmente ordinato.
  2. è completo.

La prima proprietà è lunga da dimostrare ma sostanzialmente semplice; si tratta di verificare le proprietà di campo commutative e di ordine totale e consigliamo di farle per esercizio.
La seconda proprietà è deducibile anche intuitivamente. Infatti, preso un qualsiasi sottoinsieme superiormente limitato , esiste certamente nei reali l'estremo superiore.

Valore assoluto[modifica]

Sia . Si definisce il valore assoluto (o modulo) di il numero reale denotato con tale che

.

Proposizione (proprietà del valore assoluto)[modifica]

, si ha

  1. (disuguaglianza triangolare)
Dimostrazione[modifica]

Le proprietà 1 e 3 sono molto facili e ne omettiamo la dimostrazione per brevità.
La 2 afferma che il valore assoluto è sempre non negativo. Infatti:

  • ed è ovviamente assurdo, perché se è positivo, il massimo tra e è . Se è negativo, il massimo tra e è , che è appunto maggiore di 0.

Riguardo la disuguaglianza triangolare, abbiamo:

  • se uno dei due è nullo (ad esempio otteniamo
  • altrimenti


Parte intera[modifica]

Sia . Si definisce parte intera di il numero intero, denotato con , tale che:

.

Mantissa[modifica]

Sia e parte intera di . Si definisce il mantissa di il numero reale, denotato con , tale che:

Induzione matematica e insiemi induttivi[modifica]

Consideriamo un insime . Si dice induttivo se

Denotiamo con l'insieme di tutti i sottoinsiemi induttivi di .

Insieme dei numeri naturali[modifica]

In altre parole, è il più piccolo degli insiemi induttivi.

Teorema (principio di induzione matematica)[modifica]

Sia una proposizione logicamente significativa. Se

  1. è vera

allora è vera per ogni .

Dimostrazione[modifica]

Sia l'insieme degli per cui valgano le condizioni 1 e 2. è allora un insieme induttivo e sappiamo che è il più piccolo degli insiemi induttivi, dunque . D'altra parte si ha, per ipotesi, che . Dunque .


Importanti considerazioni finali[modifica]

Lemma[modifica]

non è superiormente limitato.

Dimostrazione del Lemma[modifica]

Infatti, se lo fosse, per la completezza di esisterebbe un reale tale che . Però, siccome è il minore di tutti i maggioranti, non è più un maggiorante e dunque, per un opportuno si ha che e dunque e abbiamo finito, perché l'ipotesi che sia un maggiorante è contraddetta.


Teorema (proprietà di Archimede)[modifica]

è archimedeo, cioè

Dimostrazione[modifica]

Per assurdo, . Dunque ed sarebbe superiormente limitato. Impossibile.


Teorema (densità dei razionali nei reali)[modifica]

Siano e sia , allora
Dimostrazione[modifica]

Dalle ipotesi del Teorema abbiamo che da cui si evince facilmente che . Poniamo, per alleggerire le notazioni, . Poiché è archimedeo allora esisterà un tale che

e quindi

. Sia ora

, vale da cui

. Osserviamo ora che può essere riespresso come

. Deduciamo quindi che

con e di conseguenza .