Meccanica lagrangiana
- Introduzione alla meccanica lagrangianaMeccanica analitica/Introduzione alla meccanica lagrangiana
- Vincoli, virtualismi, variabili lagrangianeMeccanica analitica/Vincoli, virtualismi, variabili lagrangiane
- Equazione simbolica di d'AlembertMeccanica analitica/Equazione simbolica di d'Alembert
- La lagrangiana e le equazioni di Eulero-LagrangeMeccanica analitica/La lagrangiana e le equazioni di Eulero-Lagrange
- Quantità conservateMeccanica analitica/Quantità conservate
- Punti di equilibrioMeccanica analitica/Punti di equilibrio
- Piccole oscillazioni attorno a punti di equilibrio stabiliMeccanica analitica/Piccole oscillazioni attorno a punti di equilibrio stabili
Meccanica hamiltoniana
- Hamiltoniana, equazioni canoniche di HamiltonMeccanica analitica/Hamiltoniana, equazioni canoniche di Hamilton
- Spazi delle fasiMeccanica analitica/Spazi delle fasi
- Prede e predatori: le equazioni di Lotka e VolterraMeccanica analitica/Prede e predatori: le equazioni di Lotka e Volterra
- Parentesi di PoissonMeccanica analitica/Parentesi di Poisson
- Quantità conservate e quantità compatibili attraverso le parentesi di PoissonMeccanica analitica/Quantità conservate e quantità compatibili attraverso le parentesi di Poisson
- Il problema della brachistocrona, elementi di analisi funzionaleMeccanica analitica/Il problema della brachistocrona, elementi di analisi funzionale
- Il principio variazionale di Hamilton, condizioni alla DirichletMeccanica analitica/Il principio variazionale di Hamilton, condizioni alla Dirichlet
- Il principio variazionale di Hamilton ampliatoMeccanica analitica/Il principio variazionale di Hamilton ampliato
- Funzione principale di HamiltonMeccanica analitica/Funzione principale di Hamilton
- Trasformazioni canonicheMeccanica analitica/Trasformazioni canoniche
- Parentesi di Poisson e trasformazioni canonicheMeccanica analitica/Parentesi di Poisson e trasformazioni canoniche
- Metodo di Hamilton-JacobiMeccanica analitica/Metodo di Hamilton-Jacobi
- Il confine tra meccanica hamiltoniana e meccanica statisticaMeccanica analitica/Il confine tra meccanica hamiltoniana e meccanica statistica
- La corda vibranteMeccanica analitica/La corda vibrante
Relatività speciale
- La fisica dopo MaxwellMeccanica analitica/La fisica dopo Maxwell
- Esperienza di Michelson-Morley e l'ipotesi di EinsteinMeccanica analitica/Esperienza di Michelson-Morley e l'ipotesi di Einstein
- Trasformazioni di Lorentz e composizione delle velocitàMeccanica analitica/Trasformazioni di Lorentz e composizione delle velocità
- Conseguenze dell'ipotesi di Einstein: dilatazione dei tempi e contrazione delle lunghezzeMeccanica analitica/Conseguenze dell'ipotesi di Einstein: dilatazione dei tempi e contrazione delle lunghezze
- Spazio di MinkowskyMeccanica analitica/Spazio di Minkowsky
- Cinematica relativisticaMeccanica analitica/Cinematica relativistica
- Dinamica relativisticaMeccanica analitica/Dinamica relativistica
- Lagrangiana in relatività e l'effetto ComptonMeccanica analitica/Lagrangiana in relatività e l'effetto Compton
Modifica il sommario
Ricordiamo il nostro obiettivo: scrivere l'equazione di Newton in funzione delle variabili lagrangiane. Ci resta ancora un po' di strada da fare, che percorreremo tra questo e il successivo paragrafo. Il primo tentativo di spostare lo sguardo dalla meccanica newtoniana alla meccanica lagrangiana è dato dall'equazione di d'Alembert.
Definizione
Equazione simbolica di d'Alembert:
L'equazione simbolica di d'Alembert è vera per qualunque scelta arbitraria di . Il problema è che i non sono indipendenti tra loro: in un sistema rigido, per esempio, la distanza dei vari punti dall'origine varia nel tempo, ma la forma geometrica del sistema no, quindi le distanze sono comunque in relazione tra loro. Proviamo allora a scrivere i in funzione delle variabili lagrangiane e, oltre a questi, scriviamo anche le quantità meccaniche più importanti.
L'espressione indica la derivata totale rispetto al tempo, mentre indica quella parziale; l'espressione la indicheremo, da adesso e per sempre, . Scriviamo ora l'espressione dell'energia cinetica , sostituendo al posto di l'espressione trovata in funzione delle :
Facciamo chiarezza sugli indici delle sommatorie. L'indice indica il numero di particelle che compongono il sistema fisico che stiamo trattando, mentre gli indici indicano i gradi di libertà del nostro sistema fisico, corrispondente anche al numero di variabili lagrangiane.
Notiamo che l'ultimo elemento della somma non dipende esplicitamente da ; lo chiameremo allora . Sviluppiamo a un altro livello l'energia cinetica:
I due elementi tra parentesi li rinominiamo come indicato, e otteniamo infine l'espressione dell'energia cinetica in funzione delle variabili lagrangiane che, ricordiamo, sono indipendenti tra loro:
Concludiamo il capitolo facendo una piccola osservazione sul lavoro virtuale, definito come: ; esplicitiamo gli spostamenti virtuali:
Tutto questo lavoro è stato fatto per passare dai , che sono dipendenti tra loro, ai , che, per definizione delle variabili lagrangiane, sono indipendenti tra loro (rappresentano gli spostamenti virtuali delle variabili lagrangiane). Quelli che abbiamo indicato con sono scalari che indicano le forze lagrangiane; queste, così come per le variabili, non hanno dimensioni di una forza ma dipendono dalle dimensioni delle variabili, in modo che il loro prodotto scalare abbiamo le dimensioni di un'energia (lavoro). Questo ci indica che, così come c'è un sacco di libertà nella scelta delle variabili lagrangiane, questa libertà si traduce poi nel dover prestare più attenzione alle forze che agiscono su queste variabili, in termini dimensionali. In generale, però, basta l'esperienza e l'allenamento per riuscire a individuare bene le dimensioni di un oggetto fisico.