Elettronica pratica/Circuito RLC

Wikibooks, manuali e libri di testo liberi.
Jump to navigation Jump to search
Introduzione
  1. Scopo di questo libroElettronica pratica/Scopo
  2. PrerequisitiElettronica pratica/Prerequisiti
  3. PrefazioneElettronica pratica/Prefazione
Capitolo 1. Basi di elettrotecnica
  1. Carica elettrica e legge di CoulombElettronica pratica/Carica elettrica e legge di Coulomb
  2. Celle elettricheElettronica pratica/Celle elettriche
  3. ResistoriElettronica pratica/Resistori
  4. CondensatoriElettronica pratica/Condensatori
  5. InduttoriElettronica pratica/Induttori
  6. PileElettronica pratica/Pile
  7. Altri componentiElettronica pratica/Altri componenti
  8. Leggi delle tensioni e correnti CCElettronica pratica/Leggi delle tensioni e correnti CC
  9. Analisi nodaleElettronica pratica/Analisi nodale
  10. Analisi di reteElettronica pratica/Analisi di rete
  11. Circuiti equivalenti Thevenin e NortonElettronica pratica/Circuiti equivalenti Thevenin e Norton
  12. Analisi circuitale in CCElettronica pratica/Analisi circuitale in CC
  13. Strumenti di misuraElettronica pratica/Strumenti di misura
  14. Rumore nei circuiti elettroniciElettronica pratica/Rumore nei circuiti elettronici
Capitolo 2. Circuiti in CA
  1. Corrente e tensione in CAElettronica pratica/Corrente e tensione in CA
  2. FasoriElettronica pratica/Fasori
  3. ImpedenzaElettronica pratica/Impedenza
  4. Stato stazionarioElettronica pratica/Stato stazionario
Capitolo 3. Analisi transitoria
  1. Circuito RCElettronica pratica/Circuito RC
  2. Circuito RLCElettronica pratica/Circuito RLC
Capitolo 4. Circuiti analogici
  1. Circuiti analogiciElettronica pratica/Circuiti analogici
  2. Valvole elettronicheElettronica pratica/Valvole elettroniche
  3. DiodiElettronica pratica/Diodi
  4. AmplificatoriElettronica pratica/Amplificatori
  5. Amplificatori operazionaliElettronica pratica/Amplificatori operazionali
  6. Moltiplicatori analogiciElettronica pratica/Moltiplicatori analogici
Capitolo 5. Circuiti digitali
  1. Circuiti digitaliElettronica pratica/Circuiti digitali
  2. Algebra BooleanaElettronica pratica/Algebra Booleana
  3. TTLElettronica pratica/TTL
  4. CMOSElettronica pratica/CMOS
  5. Circuiti integratiElettronica pratica/Circuiti integrati
Elementi dei circuiti digitali
  1. TransistoreElettronica pratica/Transistore
  2. Porte logiche fondamentaliElettronica pratica/Porte logiche fondamentali
  3. Flip-FlopElettronica pratica/Flip-Flop
  4. ContatoriElettronica pratica/Contatori
  5. SommatoriElettronica pratica/Sommatori
  6. MultiplatoriElettronica pratica/Multiplatori


Architettura dei computer
  1. RAM e ROMElettronica pratica/RAM e ROM
  2. RegistriElettronica pratica/Registri
  3. ALUElettronica pratica/ALU
  4. Unità di controlloElettronica pratica/Unità di Controllo
  5. I/O
Convertitori A/D e D/A
  1. Conversione A/D e D/AElettronica pratica/Conversione A/D e D/A
Appendice
  1. DefinizioniElettronica pratica/Definizioni
  2. FormuleElettronica pratica/Formule
  3. Passo di elaborazioneElettronica pratica/Passo di elaborazione (da collocare)

Circuito RLC[modifica]

Il circuito RLC consiste di un resistore R, di un condensatore C e di un induttore L . I circuiti RLC possono venire caratterizzati sia nel dominio del tempo che in quello della frequenza.

RLC series circuit v1.svg

Analisi del circuito RLC nel dominio del tempo[modifica]

Quando l'interruttore viene chiuso si applica una tensione a gradino al circuito. Poniamo uguale a 0 il tempo in cui l'interruttore è stato chiuso, cosicché la tensione prima che l'interruttore sia chiuso è 0 volt e la tensione dopo la sua chiusura è di V volt. La tensione ai capi del condensatore consiste di una risposta forzata e di una risposta naturale talché:

La risposta forzata è dovuta alla chiusura dell'interruttore, che è la tensione V a . La tensione naturale dipende dai valori

del circuito ed è data qui di seguito.

Definiamo la frequenza polare

ed il fattore di smorzamento

Dipendendo dai valori di e il sistema può essere caratterizzato come:

  1. Se il sistema è sovrasmorzato. La soluzione ha la forma:
  2. Se il sistema è a smorzamento critico. La soluzione del sistema ha la forma:
  3. Se il sostema è sottosmorzato. La soluzione del sistema ha la forma:

Analisi del circuito RLC nel dominio delle frequenze[modifica]

Definiamo la frequenza di polo e il fattore di smorzamento come:

Per analizzare il circuito prima calcoliamo la funzione di trasferimento H(s) nel dominio del campo complesso. Per il circuito RLC della figura 1 si ha:

Quando si chiude l'interruttore, si applica una forma d'onda a gradino al circuito RLC.Il gradino è dato da Vu(t). Dove V è la tensione del gradino e u(t) è la funzione a gradino unitario. L'uscita è data dalla convoluzione della risposta d'impulso h(t) e della funzione a gradino Vu(t). Pertanto l'uscita è data dalla moltiplicazione H(s)U(s) nel dominio del campo complesso, dove è data dalla trasformata di Laplace disponibile nell'appendice.

La convoluzione di u(t) e h(t)è data da:

Dipendendo dai valori di e il sistema può essere caratterizzato come:

3. Se , il sistema è sottosmorzato. La soluzione di h(t)u(t) è data da:

.

Altri progetti[modifica]