Analisi matematica/Determinanti e matrici

Wikibooks, manuali e libri di testo liberi.
Jump to navigation Jump to search

Matrici[modifica]

Viewmag.png Definizione

Si definisce matrice una tabella di numeri reali (o complessi), disposti su n righe e m colonne, dove con il termine:

  • riga intendiamo le righe orizzontali
  • colonna intendiamo invece le righe verticali

Una matrice si presenterà nella forma più generica come:

nel qual caso il numero di righe è n, mentre quello delle colonne è m. Solitamente per denominare le matrici si usano le lettere maiuscole latine.

  • I numeri che riempiono una matrice vengono detti elementi ognuno dei quali occupa una posizione ben precisa. Un generico elemento è denotato con , dove la coppia di indici i,j indicano rispettivamente l'i-esima riga e la j-esima colonna e determinano univocamente la posizione dell'elemtento nella matrice.
  • La dimensione di una matrice che ha n righe e m colonne è
Esempio
Sia A la seguente matrice:
In questo caso la dimensione di A è in quanto vi sono 2 righe e 2 colonne, inoltre:
L'elemento perché 1 si trova all'incrocio della prima riga e la prima colonna
L'elemento perché 2 si trova all'incrocio della prima riga e la seconda colonna
L'elemento perché 3 si trova all'incrocio della seconda riga e la prima colonna
L'elemento perché 3 si trova all'incrocio della seconda riga e la seconda colonna

determinante di 2° ordine[modifica]

determinante di 3° ordine[modifica]

determinante di 4° ordine[modifica]

(regola di sviluppo di Laplace):

determinante di ordine n[modifica]

dove è il determinante di ordine , ottenuto dal dato colla soppressione della orizzontale e della verticale preso col segno il determinante si dice complemento algebvrico o aggiunto di

Se si ha:

(sviluppo di un determinante con due line uguali il cui valore è 0).

determinante di Vandermonde[modifica]

Questo determinante è diverso da se i numeri sono differenti.

determinante reciproco[modifica]

essendo il determinante dato.

Prodotto di due determinanti di ordine n[modifica]

dove:

cioè: risulta dalla moltiplicazione della orizzontale del per la del

Il prodotto però può pure eseguirsi per verticali fra loro oppure anche con orizzontali per verticali o viceversa.

rango di una matrice[modifica]

Data la matrice:

si dice rango l'ordine massimo dei determinanti diversi da zero contenuti nella matrice. Date m forme lineari: ar1x1+ar2x2+...+arnxn=Ur con r=1,2...m, la carsatteristica della matrice dei coefficienti dà il numero di tali forme linearmente indipendenti.

esempio: Il rango della seguente matrice quadrata è 2.

Notare che in questo caso la matrice contiene un determinante di terzo ordine che è zero, nove determinanti di secondo ordine non nulli, e nove determinanti di primo ordine (elementi).